Posts Tagged 'Jo Boaler'

MathThink MOOC v4 – Part 3

In Part 3, I describe some aspects and origins of the basic course pedagogy, and how they relate to student expectations.

This post continues the previous two in this series.

Expectations. So far I’ve talked about two expectations many students bring to my MOOC that cause problems:

(1) a perception that learning is a cycle of

instruction –> worked examples –> student exercises

(a process that’s better described as training, not learning), and

(2) a belief that failure is something to be avoided (rather than the essential part of learning that it is).

A third problematic expectation many students bring is based on the assumption that mathematics is a body of knowledge to be absorbed, rather than a way of thinking that has to be learned/acquired/developed. That belief is what can lead to the erroneous, and educationally debilitating, perception of mathematics that what makes it hard to learn is the sheer number of different rules and tricks that have to be learned, as described in the article about Jo Boaler’s work I cited in Part 1 of this series.

The view of mathematics as a large collection of procedures can get you quite a way, which explains the huge success of Khan Academy, which shows you all those rules – thousands of them! But it won’t get you to the stage of thinking like a mathematician. Mastering an array of procedures is fine if you are (1) willing to invest the time to keep learning new tricks and (2) prepared to end up working for someone who can do the latter (i.e., think mathematically). Because, increasingly, in the western world, it is that latter that is the valuable commodity. (I wrote about this back in 2008.) My use of the term “mathematical thinking”, rather than just “mathematics”, to title my course was designed to highlight the distinction, but many students nevertheless come to my MOOC expecting a mathematics course (in the sense they have come to understand that term), and are disappointed to discover that it is nothing of the kind. (Some have even asked why I don’t make it more like Khan Academy, a bizarre request which leaves me wondering why they don’t just enter the KA URL in their browser rather than navigate to my MOOC.)

Based on the kinds of issues I’ve been discussing regarding mathematical thinking, in designing my MOOC (and the classroom course that came earlier), I drew on a number of established pedagogies. Most notably among them is Inquiry-Based Learning. For a general background on this powerful and effective learning method, check out this 21-minute video.

Do please watch this video. The focus of much of the video is producing professional mathematicians, and that reflects a common use of the IBL method in mathematics majors classes. In my course, however, with its focus on general mathematical thinking skills for use in many life situations, I don’t ask the students to act as those in a regular IBL class – that would be impossibly hard to pull off in a MOOC in any case. But I believe the general learning principles apply (perhaps even more so), and some of the comments in the video from people who pursued careers in industry address that aspect.

Another pedagogic strategy I adopt is one that has been used in mathematic education since the time of the ancients, which I usually refer to as the Mr Miyagi Method, after the Japanese martial arts expert in the hit 1984 movie The Karate Kid. Having promised to teach karate to the young American Daniel Larusso, Mr Myagi makes his young student paint a fence, wax a floor, and polish several cars. Only with great reluctance does Daniel acquiesce, but in due course he discovers the value of all that effort, as you see from this brief clip.

As I say, this form of teaching has been used in mathematics for centuries. The reason is that in many cases it is impossible to appreciate how mathematics can be applied in a particular situation until enough of the relevant mathematics has been learned. So you design small, self-contained exercises to develop the individual component abilities. Mathematics textbooks have been doing this since they were written on clay tablets five thousand years ago. It’s what most people experience as “mathematics education.”

An attractive alternative is project-based learning. (Again, please do watch this short video.) Unfortunately, whereas PBL is fine for a regular course, in a MOOC that is designed to be of value both to students working on their own, with few if any additional resources, and to students who just participate in a part of the course, it is not an option. That leaves the Miyagi Method as the only game in town.

Even is a regular classroom, and for sure in a MOOC, I would however strongly recommend not adopting Mr Miyagi’s method of delivery. It would surely have been better (as an educational strategy, though not as a movie scene) if he had first explained to Daniel what those chores had to do with learning karate. If a student has to ask, “Why am I learning this?”, the teaching has failed. Why not tell the student from the start?

But remember, times change, and skills and abilities that were valuable in one era sometimes become far less significant, as we are reminded by another Hollywood blockbuster character, Indiana Jones. So you’d better be sure that when you tell a student why a particular topic is important, the reason you give is plausible. (Note: In today’s world, no one balances checkbooks any more – heavens, most people no longer have a checkbook – and no householder uses geometry to figure out how much carpet to order for a room.)

Turning the failing-as-part-of-learning meme on my own journey of learning how to design and give a MOOC, I think that so far I have definitely failed to make sufficiently clear to my MOOC students (1) the basic goals of the course, (2) the approach I am taking to try to achieve those goals, and (3) how those goals lead to adopting the methods I have just outlined above.

To be sure, I laid everything out in detail in the guide-notes I posted on the course website, and in some of my earlier posts to this blog, that I link to from the course site. The problem was, many students never read everything on the site; indeed, some appear not to have read any of the site information.

Now, you might say, they had an obligation to do so. It’s their education, after all, not mine. But MOOCs are about taking learning to a much wider audience than is reached by traditional higher education, and if a MOOC instructor does not manage to connect to that audience, then that is a failure of mission.

As a result, one change I am making with the new version of the course in February is that one of the first things the students will encounter is a video of me explaining the course pedagogy.

[From the very first offering of the course, I posted video discussions between me and my then course TAs, in which we discussed the course design, but those discussions really only made sense after a student had spent some time in the course. So from the second run onwards I cut them into short segments that were released on the site throughout the course. I suspect those discussions were perceived more as “Charlie Rose type” television conversations, rather than providing key information about how to take the course. (In the second of the two discussions, I even asked a professional television and radio host I know to moderate the discussion.) In any case, they did not have the effect I hope will be achieved by a face-to-face explanation by me, as the instructor, of the course goals and structure, given before the course starts. You can view those two earlier videos at: Team Discussion (8mins), What’s New in Number Two (10min 45sec).]

Will my new introductory video solve the problem? I don’t know. For sure, MOOC students do watch (almost) all the videos. Indeed, if there is a problem, it is that some seem to perceive the videos as the most important component of the course, a perception the news media seem to share. Why is that a problem? Because video instruction (i.e., direct instruction) in fact-based, science disciplines does not work. Indeed, instructional videos do actual harm by re-enforcing any prior-held false beliefs, as Derek Muller explains in this video. (Yup, putting math and science education out as a MOOC is hard!)

My guess is that my new introductory video will have an effect, but it will be limited, and many will still be left feeling confused as the course moves ahead. Unfortunately, since the only tools we have at our disposal in a MOOC are video, text, and social media, I don’t see what more I can do, so my gut feeling at this stage is that with the new video I will have gone as far as the medium allows. Nothing works for everyone. All we can do is design for a feasible maximum.

I’ll say (yet) more on this theme of recognizing, anticipating, and dealing with student expectations in my next post. Based on giving three successive versions of my MOOC now, I think the student expectations issue is much more significant in a MOOC than in a regular class. The reason is that in a MOOC, because you have no direct contact with the students, you have very limited ability to counter or correct or allow for those expectations. Your only real strategy is to identify them, and pre-emptively try to lessen their impact on the student.

great-expectations-posterTRAILER (LOOKS GOOD)

Advertisement

MathThink MOOC v4 – Part 1

In Part 1 of a series, I focus on the distinction between high school math and university-level mathematics, suggesting they are effectively different subjects that are best learned in different ways.

One of the biggest obstacles in giving an online course on mathematical thinking, which my MOOC is, is coping with the expectations students bring to the course – expectations based in large part on their previous experience of mathematics classes. To be sure, prior expectations are often an issue for regular, physical classes. But there the students have an opportunity to interact directly with the instructor on a regular basis. They also have the benefit of a co-present support group of others taking the same class.

But in a massive open online class, apart from locally configured support groups and text-based discussions on the MOOC platform discussion forum, each student is pretty much on her or his own.

The situation is particularly bad for a course like mine, designed to help students transition from high school mathematics to university-level mathematics. For one thing, the two are so different as to be in many ways completely distinct subjects.

School mathematics tends to be almost exclusively procedural, mastering established methods to solve artificially constructed problems designed to be amenable to such an approach. The student who best masters all the techniques in the syllabus and becomes skillful in pattern-matching problems to solution methods, does well. (I know that first hand; it’s how I got to university to study mathematics!)

In contrast, university mathematics is about learning how to deal with a novel situation of a kind you have not encountered before. (If no one else has encountered it, we call it mathematics research.) Though it certainly can involve pattern matching and the application of established, standard procedures, it usually does so only as components of a novel solution you develop to deal with that particular situation. Moreover, at university level, the problems are typically of a “prove that this is true (or false)” variety, rather than “solve this equation” or “compute the value of that formula.”

What is more, while a school math problem typically has a right answer, university mathematics generally involves much more than mere correctness. Indeed, there may not be a unique “right answer.”

Not only is the subject matter different, so too is the pedagogy. Almost all students’ experience of mathematics learning in school is teacher instruction. The teacher describes a method, does a few worked examples, and then asks the students to do a few similar ones. Rinse and repeat.

It’s a very efficient way to cover a lot of ground when the goal is pattern matching and procedure application. It works for school mathematics. Unfortunately, it does not prepare the graduates for the other kind of mathematics. (It also leaves them without ever having a satisfactory answer to their question “What is this good for?”, a question that leaves anyone versed in mathematics astounded. “What is it not good for?” is a more interesting question. It does not have a simple answer, by the way. It’s a very nuanced question.)

It’s like teaching someone the elements of bricklaying, carpentry, plumbing, and electrical wiring, and then asking them to go out and design and build a house. You need all of those skills to build a house, but on their own they are not enough. Not even close.

In deciding, almost two years ago now (before the New York Times had heard of MOOCs) to develop a MOOC to help people learn the other kind of mathematics, what I call mathematical thinking, I knew I was taking on a big challenge. I’d found it hard to teach that kind of course in a physical classroom with just 25, carefully selected students at elite colleges and universities.

On the other hand, most people go through their entire mathematics education without ever encountering what I and my colleagues would call “real mathematics,” and many of them eventually find they need to be able to handle novel situations that involve – or may involve – or could productively be made to involve – mathematical thinking. So I felt there was a need to have a resource publicly available to help them acquire this valuable ability.

The huge dropout rates in MOOCs did not really bother me. For a mathematical thinking course, it’s possible to gain value from dropping into the course for just a few days – and to keep coming back at future times if required. The focus was not on credentialing, it was developing a valuable mental ability – a powerful way of thinking that our ancestors have developed over three thousand years.

That way of thinking can be utilized profitably in many other courses that do yield a certified credential, so students could approach the course as a low-stress, no-risk way of preparing for subsequent learning.

The course is structured as course for those students who seek an encapsulated experience, and in many ways that yields the greatest benefits, in large part because of the interactions with other students working on the same stuff. But the majority of students who have taken it the three times I have offered it have just taken a part of the course.

Each time I gave the course, I changed it, based on what I had learned. When it launches again in February, it will be different again. This time, in some fairly significant ways. In the coming days, I’ll describe those changes and why I made them.

First out of the gate, I’ll describe what exactly were the problems caused by those expectations many students brought to the course, and  how did I try to deal with them. Also, what am I changing in the coming version of the course to try to help more people make what is a very difficult transition: from being taught (i.e., instructed) to being able to learn. The reward for making that one transition is huge. It opens up all of mathematics, and in the process makes it much, much easier.

The traditional, instructional way of teaching procedural mathematics frequently leaves students with the impression (dramatically documented by my Stanford colleague Jo Boaler) that mathematics consists of a large number of rules to be learned. But at the risk of sounding like those weird web advertisements (you know, the ones with a drawing or photo of a strange looking person) promising to teach that “one great trick” that will change your life, let me leave you by telling you the one great trick that all mathematicians learn:

You just have to master, once, a particular way of thinking, and you no longer need all those rules.

That’s what my course focuses on. Stay tuned.


I'm Dr. Keith Devlin, a mathematician at Stanford University. I gave my first free, open, online math course in fall 2012, and have been offering it twice a year since then. This blog chronicles my experiences as they happen.

Twitter Updates

New Book 2012

New book 2011

New e-book 2011

New book 2011

March 2023
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031  

%d bloggers like this: