Posts Tagged 'transition math'

MathThink MOOC v4 – Part 6

In Part 6, I talk about the new Test Flight process.

In the past, when students enrolled for my MOOC, they essentially had three options. One was not to take it as a course at all, but just regard it as a resource to peruse over time or to pick and choose from. A second was to take the entire course, but do so on their own time-scale. Or they could take it as a course, and go through it at the designated pace.

As do many MOOC designers, I tried to make sure my course could be used in all three ways. Though the vast majority of MOOC students fall into the first category, the other two are the ones that require by far the greatest effort by the course designer. They are the learners who have significant ambitions and will put in a lot of effort over several weeks.

The students in the last category will surely gain the most. In particular, they move through the course in lockstep with a cohort of several thousand other students who can all learn from and support one another, as they face each course deadline at the same time. Those students form the core community that is the heart of the course.

When the new class enrolls at the start of February, the ones intending to take an entire course as scheduled will have a new choice. They can take what I am calling the Basic Course, which lasts eight weeks, or the Extended Course, which lasts ten. As I described in my last post, those extra two weeks are devoted to a process I am calling Test Flight.

In the previous two versions of the course, the final weeks nine and ten had been devoted to a Final Exam, one week for completion of the (open book) exam itself, the following week to peer evaluation. In peer evaluation, which started as soon as the class had completed and submitted their exam solutions, each student went through a number of activities:

1. Using a rubric I supplied, each student evaluated three completed examination scripts assembled by me, and then compared their results to mine. (Those three samples were selected by me to highlight particular features of evaluation that typically arise for those problems.)

2. Having thus had some initial practice at evaluation, each student then evaluated three examination scripts submitted by fellow students. (The Coursera platform randomly and anonymously distributed the completed papers.)

3. Each student then evaluated their own completed examination.

This was the system Coursera recommended, and for which they developed their peer evaluation module. (Actually, they suggested that each student evaluated five peer submissions, but at least for my course, that would have put a huge time requirement on the students, so I settled for three.)

Their original goal, and mine, was to provide a means for assigning course grades in a discipline where machine evaluation is not possible. The theory was that, if each student is evaluated by sufficiently many fellow students, each of whom had undergone an initial training period, then the final grade – computed from all the peer grades plus the self-grade – would be fairly reliable, and indeed there is research that supports this assumption. (Certainly, students who evaluate their own work immediately after evaluating that of other students tend to be very objective.)

As far as I could tell, the system worked as intended. If the goal of a MOOC is to take a regular university course and make it widely available on the Internet, then my first three sessions of the course were acceptably successful. But MOOCifying my regular Mathematical Thinking (transition) class was always just my starting point.

Since I was aware from the outset that the MOOC version of my regular classroom course was just a two-dimensional shadow of the real thing, where I interact with my class on a regular basis and give them specific feedback on their work, my intention always was to iteratively develop the MOOC into something that takes maximum advantage of the medium to provide something new of value – whatever that turns out to be.

I expected that, as MOOCs evolve, they would over time come to be structured differently and be used in ways that could be very different from our original design goals. That, after all, is what almost always happens with any new product or technology.

One thing I observed was that, while students often began feeling very nervous about the requirement that they evaluate the work of fellow students, and (justifiably) had significant doubts about being able to do a good job, the majority found the process of  evaluating mathematical arguments both enjoyable and a hugely beneficial learning process.

Actually, I need to say a bit more about that “majority” claim. My only regular means of judging the reactions of the class to the various elements of the course was to read the postings on the course discussion forums. I spent at least an hour every day going through those forums, occasionally posting a response of my own, but mostly just reading.

Since the number of regular forum posters is in the hundreds, but the effective (full-term) class was in excess of 5,000 in each of the sessions, forum posters are, by virtue of being forum posters, not representative. Nevertheless, I had to proceed on the assumption that any issue or opinion that was shared (or voted up) by more than one or two forum posters was likely to reflect the views of a significant percentage of the entire (full-term) class.

Since I made gradual changes to the course based on that feedback, this means that over time, my course has been developing in a way that suits the more active forum posters. Arguably that is reasonable, since their level of activity suggests they are the ones most committed, and hence the ones whose needs and preferences the course should try to meet. Still, there are many uncertainties here.

To return to my point about the learning and comprehension benefits evaluators gained from analyzing work of their peers, that did not come as a surprise. I had found that myself when, as a graduate student TA, I first had to evaluate students’ work. I had observed it in my students when I had used it in some of my regular classes. And I had read and heard a number of reports from other instructors who noted the same thing.

It was when I factored the learning benefits of evaluating mathematical arguments in with my ongoing frustration with the degree to which “grade hunting” kept getting in the way of learning, that I finally decided to turn the whole exam part on its head.

While some universities and some instructors may set out to provide credentialing MOOCs, my goal was always to focus on the learning, drawing more on my knowledge of video games and video-game learning (see my blog profkeithdevlin.org) than on my familiarity with university education (see my Stanford homepage).

Most of what I know about giving a university-level course involves significant student-faculty interaction and interpersonal engagement, whereas a well-designed video game maintains the player’s attention and involvement using very different mechanisms. With a MOOC of necessity being absent any significant instructor-student interaction, I felt from the outset that the worlds of television and gaming would provide the key weapons I needed to create and maintain student attention in a MOOC.

[A lot of my understanding of how TV captures the viewer’s attention I learned from my close Stanford colleague, Prof Byron Reeves, who did a lot of the groundbreaking research in that area. He subsequently took his findings on television into the video game business, co-authoring the book Total Engagement: Using Games and Virtual Worlds to Change the Way People Work and Businesses Compete.]

So from the outset of my foray into the world of online education, I was looking to move away from traditional higher-education pedagogic models and structure, and towards what we know about (television and) video games, hopefully ending up with something of value in between.

The idea of awarding a Statement of Accomplishment based on accumulated grade points had to go sooner or later, and along with it the Final Exam. Hence, with Session Four, both will be gone. From now on, it is all about the experience – about trying (and failing!).

The intention for the upcoming session is that a student who completes the Basic Course will have learned enough to be able to make useful, and confident use of mathematical thinking in their work and in their daily lives. Completion of the Test Flight process in the Extended Course will (start to) prepare them for further study in mathematics or a mathematically-dependent discipline – or at least provide enough of a taste of university-level mathematics to help them decide if they want to pursue it further.

At heart, Test Flight is the original Final Exam process, but with a very different purpose, and accordingly structured differently.

As a course culmination activity, building on but separate from the earlier part of the course – and definitely not designed to evaluate what has been learned in the course – Test Flight has its own goal: to provide those taking part with a brief hands-on experience of “life as a mathematician.”

The students are asked to construct mathematical arguments to prove results, and then to evaluate other proofs of the same results. The format is just like the weekly Problem Sets that have met throughout the course, and performance level has no more or less significance.

The evaluation rubric, originally employed to try to guarantee accurate peer grading of the exam, has been modified to guide the evaluator in understanding what factors go into making a good mathematical argument.  (I made that change in the previous session.)

After the students have used the rubric to evaluate the three Problem Set solutions supplied by me, they view a video in which I evaluate the same submissions. Not because mine provides the “correct” evaluations. There is usually no single solution to a question and no such thing as the “right” one. Rather, I am providing examples, so they can compare their evaluations with mine.

After that, they then proceed to evaluate three randomly-assigned, anonymously-presented submissions from other students, and finally they evaluate their own submission.

Procedurally, it is essentially the same as the previous Final Exam. But the emphasis has been totally switched from a focus on the person being evaluated (who wants to be evaluated fairly, of course) to the individual doing the evaluation (where striving for a reliable evaluation is a tool to aid learning on the part of the evaluator).

Though I ran a complete trial of the process last time, the course structure was largely unchanged. In particular, there was still a Final Exam for which performance affected the grade, and hence the awarding of a certificate. As a consequence, although I observed enough to give me confidence the Test Flight process could be made to work, there was a square-peg-in-a-round-hole aspect in what I did then that caused some issues.

I am hoping (and expecting) things will go smoother next time. For sure, further adjustments will be required. But overall, I am happy with the way things are developing. I feel the course is moving in the general direction I wanted to go when I set out. I believe I (and the successive generations of students) are slowly getting there. I just don’t know where “there” is exactly, what “there” looks like, and how far in the future we’ll arrive.

As the man said, “To boldly go …”

Advertisement

MathThink MOOC v4 – Part 1

In Part 1 of a series, I focus on the distinction between high school math and university-level mathematics, suggesting they are effectively different subjects that are best learned in different ways.

One of the biggest obstacles in giving an online course on mathematical thinking, which my MOOC is, is coping with the expectations students bring to the course – expectations based in large part on their previous experience of mathematics classes. To be sure, prior expectations are often an issue for regular, physical classes. But there the students have an opportunity to interact directly with the instructor on a regular basis. They also have the benefit of a co-present support group of others taking the same class.

But in a massive open online class, apart from locally configured support groups and text-based discussions on the MOOC platform discussion forum, each student is pretty much on her or his own.

The situation is particularly bad for a course like mine, designed to help students transition from high school mathematics to university-level mathematics. For one thing, the two are so different as to be in many ways completely distinct subjects.

School mathematics tends to be almost exclusively procedural, mastering established methods to solve artificially constructed problems designed to be amenable to such an approach. The student who best masters all the techniques in the syllabus and becomes skillful in pattern-matching problems to solution methods, does well. (I know that first hand; it’s how I got to university to study mathematics!)

In contrast, university mathematics is about learning how to deal with a novel situation of a kind you have not encountered before. (If no one else has encountered it, we call it mathematics research.) Though it certainly can involve pattern matching and the application of established, standard procedures, it usually does so only as components of a novel solution you develop to deal with that particular situation. Moreover, at university level, the problems are typically of a “prove that this is true (or false)” variety, rather than “solve this equation” or “compute the value of that formula.”

What is more, while a school math problem typically has a right answer, university mathematics generally involves much more than mere correctness. Indeed, there may not be a unique “right answer.”

Not only is the subject matter different, so too is the pedagogy. Almost all students’ experience of mathematics learning in school is teacher instruction. The teacher describes a method, does a few worked examples, and then asks the students to do a few similar ones. Rinse and repeat.

It’s a very efficient way to cover a lot of ground when the goal is pattern matching and procedure application. It works for school mathematics. Unfortunately, it does not prepare the graduates for the other kind of mathematics. (It also leaves them without ever having a satisfactory answer to their question “What is this good for?”, a question that leaves anyone versed in mathematics astounded. “What is it not good for?” is a more interesting question. It does not have a simple answer, by the way. It’s a very nuanced question.)

It’s like teaching someone the elements of bricklaying, carpentry, plumbing, and electrical wiring, and then asking them to go out and design and build a house. You need all of those skills to build a house, but on their own they are not enough. Not even close.

In deciding, almost two years ago now (before the New York Times had heard of MOOCs) to develop a MOOC to help people learn the other kind of mathematics, what I call mathematical thinking, I knew I was taking on a big challenge. I’d found it hard to teach that kind of course in a physical classroom with just 25, carefully selected students at elite colleges and universities.

On the other hand, most people go through their entire mathematics education without ever encountering what I and my colleagues would call “real mathematics,” and many of them eventually find they need to be able to handle novel situations that involve – or may involve – or could productively be made to involve – mathematical thinking. So I felt there was a need to have a resource publicly available to help them acquire this valuable ability.

The huge dropout rates in MOOCs did not really bother me. For a mathematical thinking course, it’s possible to gain value from dropping into the course for just a few days – and to keep coming back at future times if required. The focus was not on credentialing, it was developing a valuable mental ability – a powerful way of thinking that our ancestors have developed over three thousand years.

That way of thinking can be utilized profitably in many other courses that do yield a certified credential, so students could approach the course as a low-stress, no-risk way of preparing for subsequent learning.

The course is structured as course for those students who seek an encapsulated experience, and in many ways that yields the greatest benefits, in large part because of the interactions with other students working on the same stuff. But the majority of students who have taken it the three times I have offered it have just taken a part of the course.

Each time I gave the course, I changed it, based on what I had learned. When it launches again in February, it will be different again. This time, in some fairly significant ways. In the coming days, I’ll describe those changes and why I made them.

First out of the gate, I’ll describe what exactly were the problems caused by those expectations many students brought to the course, and  how did I try to deal with them. Also, what am I changing in the coming version of the course to try to help more people make what is a very difficult transition: from being taught (i.e., instructed) to being able to learn. The reward for making that one transition is huge. It opens up all of mathematics, and in the process makes it much, much easier.

The traditional, instructional way of teaching procedural mathematics frequently leaves students with the impression (dramatically documented by my Stanford colleague Jo Boaler) that mathematics consists of a large number of rules to be learned. But at the risk of sounding like those weird web advertisements (you know, the ones with a drawing or photo of a strange looking person) promising to teach that “one great trick” that will change your life, let me leave you by telling you the one great trick that all mathematicians learn:

You just have to master, once, a particular way of thinking, and you no longer need all those rules.

That’s what my course focuses on. Stay tuned.

Evaluation rubrics: the good, the bad, and the ugly

A real-time chronicle of a seasoned professor just about to launch the third edition of his massively open online course.

With the third session of my MOOC Introduction to Mathematical Thinking starting on September 2, I am busy putting the final touches to the course materials. As I did when I offered the second session earlier this year, I have made some changes to the way the course is structured. The underlying content remains the same, however – indeed at heart it has not changed since I first began teaching a high school to university “transition” course back in the late 1970s, when I was a young university lecturer just starting out on my career.

With the primary focus on helping students develop an new way of thinking, the course was always very light on “content” but high on internal reflection. A typical assignment question might require four or five minutes to write out the answer; but getting to the point where that is possible might take the student several hours of thought, sometimes days. Students who approach the course thinking it is an introductory course on logic – some of whom likely will, as they have in the past,  post on the course forum that they cannot understand why I am proceeding so slowly and making such heavy weather of the material – will, if they don’t walk away in disgust, eventually (by about week four) realize they are completely lost. Habituated to courses that rush through a pile of material that required mostly procedural mastery, they find it challenging, and in many cases impossible, to slow down and adopt the questioning, reflective approach this course requires.

My course uses elementary linguistics and formal logic as a vehicle to help develop new thinking skills that are essential for university mathematics majors, very valuable for STEM majors, and of considerable value for anyone who wants to lead a more rewarding life. But it is definitely not a course in linguistics or logic. It is about thinking.

Starting with an analysis of certain features of ordinary language, as I do, provides a starting point that is accessible to everyone – though because the language I examine is English, students for whom that is a second language are at a disadvantage. That is unavoidable. (A Spanish language version, embedded in Hispanic culture, is currently under development. I hope other deep translations follow.)

And formal logic is so simple and structured, and so accessible to a beginner, that it too is well suited to an introductory level course on analytic, and in particular mathematical, thinking.

Why my course videos are longer than most

The imperative of a student devoting substantial periods of time engaged in sustained contemplation of the course material has led to me making two decisions that go against the current grain in MOOCs. First, the pace is slow. I speak far more slowly than I normally do, and I repeat each point at least once, and often more so. Second, I do not break my “lectures” into the now-almost-obligatory no-longer-than-seven-and-ideally-under-three-minutes snippets. For the course’s second running, I did split the later hour or more long videos into half-hour sections, but that was to make it easier for students without fast broadband access, who have to download the videos overnight to watch them.

Of course, students can speed up or slow down the videos, they can watch them as many times as they want, and they can stop and start them to suit their schedules. But then they are in control and make those decisions based on their own progress and understanding. My course does not come pre-digested. It is slow cooking, not fast food.

Learning by evaluation

The main difference returning students will notice in the new session is the much greater emphasis on developing evaluation skills. Fairy early in the course, students will be presented with purported mathematical proofs that they have to evaluate according to a grading rubric.

At first these will be fairly short arguments, designed by me to illustrate various key features of proofs, and often incorporating common mistakes beginners make. Later on, the complexity increases. For those students who elect to take the final exam (and thereby become eligible to earn a Distinction grade for the course), evaluation will culminate in grading three randomly assigned, anonymized exam submissions from fellow students, followed by grading their own submission.

Peer evaluation is essential in MOOCs that involve work that cannot be machine graded, definitely the category into which my Mathematical Thinking course falls. The method I use for the Final Exam is called Calibrated Peer Review. It has a long history and proven acceptable results. (I describe it in some detail on my MOOC course website – accessible to anyone who signs up for the course.) So adopting peer evaluation for my course was unavoidable.

The first time I offered the course, I delayed peer evaluation until the final couple of weeks, when it was restricted to the final exam. Though things went better than I had feared, there were problems. The main issues, which came as no surprise, were, first, that many students felt very uneasy grading the work of others, second, many of them did not do a good job, and third, the rubric (which I had taken off another university’s Internet shelf) did not work at all well.

On the other hand, many students posted forum comments saying they found they enjoyed that part of the course, and learned more in those final two weeks than in the entire earlier part of the course.

I had in fact expected this would be the case, and had told the class early on that many of them would have that reaction. In particular, evaluating the work of fellow students is a very powerful, known way to learn new material. Nevertheless, it came as a great relief when this actually transpired.

As a result of my experience in the first session, when I gave the course a second time this spring, I increased the number of assignment exercises that required students to evaluate purported proofs. I also altered the rubric to make it better suited to what I see as the main points in the course.

The outcome, as far as I could ascertain from reading the comments student posted on the course discussion forum, was that it went much better. But it was still far from perfect. The two main issues were the rubric itself and how to use it.

Designing a rubric

Designing a good rubric is not at all easy for any course, and I think particularly challenging for a course on more advanced parts of mathematics. Qualitative grading of mathematical arguments, like grading essays or works of art, is a holistic skill that takes years to acquire to a degree it can be used to evaluate performance with some degree of reliability. A beginner attempting evaluation needs guidance, most typically provided by an evaluation rubric. The idea is to replace the holistic application of a lifetime’s acquisition of tacit domain knowledge with a number of categories that the evaluator should look for.

The more fine-grained the rubric, the easier it will be for the novice evaluator, but the more onerous the grading task becomes. The rubric I started with for my course had six factors, which I felt was about right – enough to make the task doable for the student yet not too many to turn it into a dull chore. I have retained that number. But, based on the experiences of students using the rubric, I changed several categories the first time I repeated the course and I have changed one category for the upcoming third session.

In each of the six categories in the rubric, the student must chose between three levels, which I name Novice, Apprentice, and Practitioner. I chose the names to emphasize that we are using evaluation as a way to learn, and the focus is to measure progress along a path of development, not assign summative performance judgments of “poor”, “okay”, and “good”.

The intention in having just three levels is to force a student evaluator to make a decision about the work being assessed. But this can be particularly difficult for a beginner who is, of course, lacking in confidence in their ability to do that. To counter that, in this third session, when the student enters the numerical value that course software will use to track progress, the numerical equivalents to those three categories are not 0, 1, 2, but 0, 2, and 4. The student can enter 1 or 3 as a “middle value” if they are undecided as to which category to assign.

Using the rubric

Even with “middling” grades available for the rubric items, most students will find the evaluation process difficult and very time consuming. A rubric simply breaks a single evaluation task into a number of smaller evaluation tasks, six in my case. In so doing, it guides the student as to what things to look for, but the student still has to make qualitative judgments within each of the categories.

To help them make these judgments, the last time I gave the course, I provided them with tutorial videos that take them through the grading process. I record myself grading the same sample arguments that they have just attempted to evaluate, verbalizing my thinking process as I go, explaining why I make the calls I do. They are not the most riveting of videos, and they can be a bit long (ten minutes for some assignment questions). But I don’t know of any other way of conveying something of the expertise I have built up over a lifetime. It is essentially a modern implementation of the age-old apprentice system of acquiring tacit knowledge by working alongside the expert.

Unfortunately, as an expert, I make calls based on important distinctions that for me jump from the student’s page, but are not even remotely apparent to a beginner. The result last time was, for some questions, considerable frustration on the part of the students.

To try to mitigate this problem (I don’t think it can be eliminated), I changed some aspects of the way the rubric is formulated and described, and decided to introduce the entire evaluation notion much earlier in the course. The result is that evaluation is now a very central component of the course. Indeed, evaluating mathematical arguments now plays a role equal to constructing them.

If it goes well – and based on my previous experience with this course, I think it will go better than last time – I will almost certainly adopt a similar approach if and when I give the course in a traditional classroom setting once again. (A heavy travel schedule associated with running a research lab means I have not taught a regular undergraduate class for several years now, though an attractive offer to spend a term at Princeton early next year will give me a much welcomed opportunity to spend some time in the classroom once again.)

Evaluating to learn, not to grade

One feature of a MOOC – or at least a MOOC like mine that does not offer college credit – is that the focus is on learning, not acquiring a credential. Thus, grading can be used entirely for formative purposes, as a guide to progress, not to provide a summative measure of achievement. As an instructor, I find the separation of the teaching and the grading extremely freeing. For one thing, with the assignment of grades out of the picture, the relationship between teacher and student is changed significantly. Also, it means numerical grades can be used as useful indicators of progress. A grade of 35% can be given for a piece of work annotated as “good” (i.e., good for someone taking an introductory course for the first time). The number indicates how much improvement would be required to take the student to the level of an expert practitioner.

To be sure, students who encounter this use of grades for the first time find it takes some getting used to. They are so habituated to the (nonsensical but widespread) notion that anything less than an A is a “failure” that they can be very discouraged when their work earns them a “mere” 35%. But in order to function as a school-to-university transition course, it has to help them adjust to a world where 35% if often a respectable passing grade.

(A student who regularly scores in the 90% range in advanced undergraduate mathematics courses can likely jump straight into a Ph.D. program – and some have done just that. 35% really can be a good result for a beginner.)

One final point about peer evaluation is an issue I encountered last time that surprised me, though perhaps it should not have, given everything I know about a lot of high school mathematics instruction. Many students approached grading the work of others as a punitive process of looking to deduct points. Some went so far as to complain (sometimes angrily) on the discussion forums about my video-streamed grading as being far too lenient.

In fact, one or two even held the view that if a mathematical argument was not logically correct, the only possible grade to give was 0. This particular perspective worried me on two counts.

Firstly, it assumes a degree of logical infallibility that no living mathematician possesses. I doubt there is a single published mathematical proof of more than a few paragraphs that does not include some minor logical slips, and hence is technically incorrect. (Most of the geometric proofs in Euclid’s Elements would score 0 if logical correctness were the sole metric!)

Second, my course is not a mathematics course, it is about mathematical thinking, and has the clearly stated aim of looking at the many different aspects of mathematical arguments required to make them “good.” Logical correctness is just one item on that six-point rubric. As a result, at most 4 of the possible 24 points available can be deducted in an argument is logically incorrect. (Actually, 8 can be deducted, as the final category is “Overall assessment”, designed to encourage precisely what the phrase suggest.)

To be sure, if my course were a mathematics course, I would assign greater weight to logical correctness. As it is, all six categories carry equal weight. But that is deliberate. Most of my students’ entire mathematical education has been in a world where “getting the right answer” is the holy grail. One other objective of transition courses is to break them of that debilitating default assumption.

Finally, and remember, this is for posterity, so be honest. How do you feel?

I’ve written elsewhere that I think MOOCs as such will not be the cause of a revolution in higher education. Rather they are just part of what is more like to be an evolution, though a major one to be sure. From the point of view of an instructor, though, they are providing us with a wonderful domain to re-examine all of our assumptions about how to teach and how students learn. As you can surely tell, I continue to have a blast in the MOOCasphere.

To be continued …

Final Lecture: MOOC Planning – Part 9

A real-time chronicle of a seasoned professor embarking on his first massively open online course.

I gave my last lecture of the course yesterday (discounting the tutorial session that will go out next week), and we are now starting a two week exam period.

“Giving” a lecture means the video becomes available for streaming. For logistic reasons (high among them, my survival and continued sanity — assuming anyone who organizes and gives a MOOC, for no payment, is sane), I recorded all the lectures weeks ago, well before the course started.  The weekly tutorial sessions come the closest to being live. I record them one or two days before posting, so I can use them to respond to issues raised in the online course discussion forum.

The initial course enrollment of 63,649 has dropped to 11,848 individuals that the platform says are still active on the site. At around 20%, that’s pretty high by current MOOC standards, though I don’t know whether that is something to be pleased about, since  it’s not at all clear what the right definition of “success” is for a MOOC.

Some might argue that 20% completion indicates that the standards are too low. I don’t think that’s true for my course. Completion does, after all, simply mean that a student is still engaged. The degree to which they have mastered the material is unclear. So having 80% drop out could mean the standard is too high.

In my case, I did not set out to achieve any particular completion rate; rather I adopted a WYSIWOSG approach — “What You See Is What Our Students Get.” I offered a MOOC that is essentially the first half of a ten week course I’ve given at many universities over the years, including Stanford. That meant my students would experience a Stanford-level course. But they would not be subject to passing a Stanford-level exam.

In fact, I could not offer anything close to a Stanford-exam experience. There is a Final Exam, and it has some challenging questions, but it is not taken under controlled, supervised conditions. Moreover,  since it involves constructing proofs, it cannot be machine graded, and thus has to be graded by other students, using a crowd sourcing method (Calibrated Peer Review). That put a significant limitation on the kinds of exam questions I could ask. On top of that, the grading is done by as many different people as there are students, and I assume most of them are not expert mathematicians. As a result, it’s at most a “better-than-nothing” solution. Would any of us want to be treated by a doctor whose final exam had been peer graded (only) by fellow students, even if the exam and the grading had been carried out under strictly controlled conditions?

On the other hand, looking at and attempting to evaluate the work of fellow students is a powerful learning experience, so if you view MOOCs as vehicles for learning, rather than a route to a qualification, then peer evaluation has a lot to be said for it. Traditional universities offer both learning and qualifications. MOOCs currently provide the former. Whether they eventually offer the latter as well remains to be seen. There are certainly ways it can be done, and that may be one way that MOOCs will make money. (Udacity already does offer a credentialing option, for a fee.)

In designing my course, I tried to optimize for learning in small groups, perhaps five to fifteen at a time. The goal was to build learning communities, within which students could help one another. Since there is no possibility of regular, direct interaction with the instructor (me) and my one TA (Paul), students have to seek help from fellow students. There is no other way. But, on its own, group work is not enough. Learning how to think mathematically (the focus of my course) requires feedback from others, but it needs to include feedback from people already expert in mathematical thinking. This means that, in order to truly succeed, not only do students need to work in groups (at least part of the time), and subject their attempts to the scrutiny of others, some of those interactions have to be with experts.

One original idea I had turned out not to work, though whether through the idea itself being flawed or the naive way we implemented it is not clear to me. That was to ask students at the start of the course to register if they had sufficient knowledge and experience with the course material to act as “Community TAs”, and be so designated in the discussion forums. Though over 600 signed up to play that role, many soon found they did not have sufficient knowledge to perform the task. Fortunately,a relatively small number of sign-ups did have the necessary background, as well as the interpersonal skills to give advice in a supporting, non-threatening way, and they more or less  ensured that the forum discussions met the needs of many students (or so it seems).

Another idea was to assign students to study groups, and use an initial survey to try to identify those with some background knowledge and seed them into the groups. Unfortunately, Coursera does not (yet) have functionality to support the creation and running of groups, apart from the creation of forum threads. So instead, in my first lecture, I suggested to the students that they form their own study groups in whatever way they could.

The first place to do that was, of course, the discussion forums on the course website, which very soon listed several pages of groups. Some used the discussion forum itself to work together, while others migrated offsite to some other location, physical or virtual, with Skype seeming a common medium. Shortly after the course launched, several students discovered GetStudyRoom, a virtual meeting place dedicated to MOOCs, built by a small startup company.

In any event, students quickly found their own solutions. But with students forming groups in so many different ways on different media, there was no way to track how many remained active or how successful they have been.

The study groups listed on the course website show a wide variety of criteria used to bring the groups together. Nationality and location were popular, with groups such as Brazil Study Group, Grupo de Estudo Português, All Students From Asia, and Study Group for Students Located in Karachi, Pakistan. Then there were groups with a more specific focus, such as Musicians, Parents of Homeschooled Children, Older/Retired English Speakers Discussion for Assignment 1, and, two of my favorites, After 8pm (UK time) English speakers with a day job and the delightfully named Just Hanging on Study Group.

The forum has seen a lot of activity: 15,088 posts and 13,622 comments, spread across 2712 different threads, viewed 430,769 times. Though I have been monitoring the forums on an almost daily basis, to maintain an overall sense of how the course is going, it’s clearly not possible to view everything. For the most part I restricted my attention to the posts that garnered a number of up-votes. Students vote posts up and down, and once a post shows 5 or more up-votes, I take that as an indication that the issue may be worth looking at.

The thread with the highest number of up-votes (165) was titled Deadlines way too short. Clearly, the question of deadlines was a hot topic. How, if at all, to respond to such feedback is no easy matter. In a course with tens of thousands of students, even a post with hundreds of up-votes represents just a tiny fraction of the class. Moreover, threads typically include opinions on both sides of an issue.

For instance, in threads about the pace of the course, some students complained that they did not have enough time to complete assignments, and pleaded for more relaxed deadlines, whereas others said they thrived on the pace, which stimulated them to keep on top of the material. For many, an ivy-league MOOC offers the first opportunity to experience an elite university course, and I think some are surprised at the level and pace. (I fact, I did keep the pace down for the first three weeks, but I also do that when I give a transition course in a regular setting, since I know how difficult it is to make that transition from high school math to university level mathematics.)

A common suggestion/request was to simply post the course materials online and let students access them according to their own schedules, much like Khan Academy. This raises a lot of issues about the nature of learning and the role MOOCs can (might? should?) play. But this blog post has already gone on long enough, so I’ll take up that issue next time.

To be continued …

The Crucible: MOOC Planning – Part 8

A real-time chronicle of a seasoned professor embarking on his first massively open online course.

Well, I have survived the initial three weeks of my first MOOC. Though the bulk of the work (and I mean “bulk”) came before the course launched, it has still taken my TA and me a lot of time to keep things ticking over. There are the in-flight corrections of the inevitable errors that occur in a new course, together with the challenges presented by a completely new medium and a buggy, beta release platform, still under very rapid development.

The course website shows 61,846 registered students, but I suspect many of those have long stopped any kind of connection to the course, and another large group are simply watching the lecture videos. The really pleasing figure is that the number of active users last week (week 3) was 19,298. Based on what I hear about other MOOCs, retaining one student in three is a good number.

Both my hands-on TA, Paul, and the course Research Associate, Molly, are graduate students in Stanford’s School of Education, and besides helping me with aspects of the course design, they are approaching the project as an opportunity to carry out research in learning, particularly mathematics learning. Given the massive amount of data a MOOC generates, the education research world can expect to see a series of papers coming from them in the months ahead.

I’m not trained in education research, but some observations are self-evident when you look over the course discussion forums – something I’ve spent a lot of time doing, both to gauge how the course is going and to look for ways to improve it, either by an in-course modification of for a future iteration of the course.

I’ve always felt that the essence of MOOC learning is community building. There is no hope that the “instructor” can do more than orchestrate events. Without regular close contact with the students, the video-recorded lectures and the various course notes and handouts are like firing off a shotgun on a misty Scottish moor. The shot flies out and disperses into the mist, and you just hope some of it hits a target. (I haven’t actually fired a shotgun on a Scottish moor, or anywhere else for that matter, but I’ve seen it on TV and it seems the right metaphor.) With 60,000 (or 20,000) students, I can’t allow myself to respond to a forum post or an email from any single student. I have to rely on the voting procedure (“Like/Dislike”) of the forums to help me decide which questions to address.

This means the student body has to resolve things among themselves. It was fascinating watching the activity on the discussion forums take shape and develop a profile over the first couple of weeks.

One huge benefit for the instructor is the virtual elimination of the potentially disruptive influence – present in almost any class with more than twenty or so students – of the small number of students for whom nothing is good enough. Even in a totally free course, put on by volunteers, for which no college credential is awarded, there were a few early posts of that kind. But in each case the individual was rapidly put in his or her place by replies from other students, and before long stopped posting, and very likely dropped the course.

(An interesting feature of this was that each time it occurred, a number of students emailed me in private – rather than on the public course forum – to say they did not agree with the complainer, and to tell me they were enjoying the course. Clearly, even with the possibility of anonymous forum posts, which Coursera allows, at least for now, some people prefer to keep their communication totally private.)

Of far greater interest, at least to me, was how the student body rapidly split into two camps, based on how they reacted to the course content. As I’ve discussed in earlier posts to this blog, my course is a high-school to university transition course for mathematics. It’s designed to help students make the difficult (and for most of us psychologically challenging) transition from high school mathematics, with its emphasis on learning to follow procedures to solve highly contrived “math problems”, to developing an ability to think logically, numerically, analytically, quantitatively, and algebraically (i.e., in aggregate, mathematically) about novel problems, including often ill-defined or ambiguous real-world problems.

When I give this kind of course to a traditional class of twenty-five or so entering college students, fresh out of high school, the vast majority of them have a really hard time with it. In my MOOC, in contrast, the student body has individuals of all ages, from late teens into their sixties and seventies, with different backgrounds and experiences, and many of them said they found this approach the most stimulating mathematics class they had ever taken. They loved grappling with the inherent ambiguity and open-ended nature of some of the problems.

Our schools (at least in the US), by focusing on one particular aspect of mathematics – the formal, procedural – I think badly shortchange our students. They send them into the world with a fine scalpel, but life in that world requires a fairly diverse toolkit – including WD40 and a large roll of duct tape.

The real world rarely presents us with neat, encapsulated problems that can be solved in ten minutes. Real world problems are messy, ambiguous, ill-defined, and often with internal contradictions. Yes, precise, formal mathematics can be very useful in helping to solve such problems. But of far broader applicability is what I have been calling “mathematical thinking”, the title of my course.

I suspect the students who seemed to take to my course like ducks to water were people well beyond high school, who had discovered for themselves what is involved in solving real problems. Judging by the forum discussions, they are having a blast.

The others, the ones whose experience of mathematics has, I suspect, been almost entirely the familiar, procedural-skills learning of the traditional K-12 math curriculum, keep searching for precision that simply is not there, or (and I’ve been focusing a lot on this in the first three weeks) where the goal is to learn how to develop that precision in the first place.

The process of starting with a messy, real world problem, where we have little more than our intuitions to guide us, and then slowly distilling some precision to help us deal with that problem, is hugely valuable. Indeed, it is the engine that powered (and continues to power) the entire development of our science and our technology. Yet, in our K-12 system we hardly ever help students to learn how to do that.

Done well, the activities of the traditional math class can be great fun. I certainly found it so, and have spent a large part of my life enjoying the challenges of pure mathematics research. But a lot of that fun comes from working within the precise definitions and clear rules of engagement of the discipline.  To me mathematics was chess on steroids. I loved it. Still do, for that matter. But relatively few citizens are interested in making  a career in mathematics. An education system that derives its goals from the ivory-towered pursuit of pure mathematics (and I use that phrase in an absolutely non-denigrating way, knowing full well how important it is to society and to our culture that those ivory towers exist) does not well serve the majority of students.

It requires some experience and sophistication in mathematics to see how skill in abstract, pure reasoning plays an important role in dealing with the more messy issues of the real world. There is an onus on those of us in the math ed community  to help others to appreciate the benefits available to them by way of improved mathematical ability.

As I have followed the forum discussions in my MOOC, I have started to wonder if one thing that MOOCs can give to mathematics higher education in spades is a mechanism to provide a real bridge between K-12 education and life in the world that follows. By coming together in a large, albeit virtual community, the precision-seeking individuals who want clear rules and guidelines to follow find themselves side-by-side (actually, keyboard-to-keyboard) with others (perhaps with weak formal mathematics skills) more used to approaching open-ended, novel problems of the kind the real world throws up all the time. If so, that would make the MOOC a powerful crucible that would benefit both groups, and thus society at large.

To be continued …

Why MOOCs Look Unprofessional: MOOC planning – Part 4

A real-time chronicle of a seasoned professor embarking on his first massively open online course.

From an educational perspective, my goal in offering a MOOC on mathematical thinking is very modest. I have not approached the task as one of developing a whole new pedagogic model. That is a future goal — for me or for others. Rather I set out to see how much we can take current university teaching (of transition mathematics material) and make it available to a wide audience. Indeed, almost all the Stanford MOOCs currently being offered are free, online versions of regular Stanford courses, in many cases running concurrently with a physical class on campus. (As I noted in an earlier post, the technology that supports these MOOCs was actually developed at Stanford in order to facilitate flipped-classroom learning in on-campus classes.)

The underlying assumption of university education — at least at major research universities (as Stanford is) — is that the principle value for the student comes from studying with a world expert in a particular domain. Though many professors at research universities do in fact put enormous effort into their teaching, what is really being offered (sold) to students is the expertise (and reputations) of the faculty. (Other parts of the value proposition, such as the prestige of the university, stem from the faculty, both past and present.) It’s a method that works well for very bright, well-prepared, and highly motivated students, but it is not ideal for everyone.

In fact, even at less prestigious universities, where there are fewer leading research faculty, and at liberal arts colleges, where the primary focus is on undergraduate education, field-content knowledge hugely outweighs pedagogical content knowledge — how to teach the subject and how students learn it. (A Ph.D. is usually required for a faculty position.) That makes universities and colleges very different from high schools.

One of the implicit purposes of  a math transition course, such as mine (as well as many other first-year courses in different disciplines), is to help incoming students adjust to the different approach to teaching. More precisely, it is to help them adjust to not being “taught”, but having someone help them learn. This is particularly significant in mathematics — at least in the US — because of the hugely formulaic, procedures-focused nature of K-12 mathematics education in this country.

My challenge then, like that facing most of my colleagues offering their first MOOC, is to figure out how to take an existing educational model, hitherto used to teach (or help to learn) twenty-five or so students in a classroom, and make it available to thousands, spread around the world.

Since my topic is mathematical thinking, the biggest, and most obvious challenge is how to compensate for the complete absence of regular interaction between the students and me, the instructor. Sure, I give lectures when I teach a physical transition class, but the lectures are one of the least significant components. They really just set the agenda for learning. In order to help the students develop the ability for mathematical thinking, I need to see them in action at the board, to read their work, and to discuss their attempts face-to-face. Learning to think mathematically is more like learning to drive or to play tennis than soaking up knowledge. You have to do it alongside an expert or coach.

It’s a challenge I think cannot be completely overcome in a MOOC. The question is, is it possible to get part-way there? I suspect it is, but we’ll only find out for sure by making the attempt. So here we are.

One thing a MOOC does offer that is not possible in a physical class — and hence is a plus — is that all the instruction and professorial-learning-assistance can be on a one-to-one basis. Sure, it’s all one way, but if you set it up right (and if your voice/personality/whatever work over an ethernet cable), then the student can get that sense of working alongside the instructor — the expert.

Though by no means the first to discover that, Salman Khan, by virtue of his huge following at Khan Academy, demonstrated just how powerful is that sense of “working together, side-by-side”. Though I share the dismay of many of my colleagues at his less-than-expert content knowledge and his almost non-existent pedagogical content knowledge (neither of which he could be expected to have, given his background), where I seem to part company with many of them is the huge significance I attach  to the way he pulls off that human-connect. For online learning, I suspect it trumps almost all other factors.

(BTW, in developing my MOOC, I soon lost track of the number of times I made a decision based on a “suspicion” — or a “guess” or  “hunch”. MOOCs are generating enough research questions to sustain several generations of doctoral dissertations in education research.)

Based on that suspicion (admittedly a suspicion comfortingly buttressed by a Khan Academy user base that numbers in the millions), Khan’s format was my starting point, as I observed in my last post. Not just the physical aspect of “sitting alongside in a one-on-one tutorial” but the associated human connect (and with it reassurance and encouragement) that Khan delivers.

In Khan’s case, his now widely familiar format originated with him informally helping his school-age relatives (who lived a long way away) with their math homework. What the viewer gets on their computer screen is, well, just “Uncle Sal”, doing what he would have done if he were really sitting alongside one of his relatives. For my MOOC, I wanted to achieve a similar outcome. Not a slick show, not a polished, rehearsed performance. Just me doing math.

Of course, the logistics of putting together a complete course that has to run automatically, and be scalable to many thousands of students around the world, many of them not native English speakers, meant that there had to be a lot of detailed advanced planning. Everything had to be scripted. But when it comes to the bits where I explain some mathematics, I put the script to one side and just start to work through the material as if I am sitting next to a student.

You might not like it. It might not work for you. You will surely despair at my handwriting. You might hate my accent. (I did cut down drastically on my jokes and puns, in deference to a multilingual audience.) But as far as I can make it, absent being physically in the same room, it’s what you would get if you were taking the course with me here at Stanford.  [Some time spent in a campus video-editing studio made my into-camera segments look a lot smoother than they were when we recorded them! If it’s digital, it’s plastic. But the goal there was to reduce the length of those segments.]

Which brings me back to my starting point: seeing the extent to which we can take existing university education and make it available to the world.

Once we can do that — and it will surely take several iterations to iron out all the kinks and make an altogether better job of it — we can look at how to change the underlying model. In addition to MOOCs making accessible to the world some aspects of university education, I think that the act of designing them, mounting them, and analyzing the results, will lead to changes in the way we organize learning within our universities.

It is because the current goal is to see how well we can deliver (current) real university education to the world for free that most of the MOOCs being offered have an unpolished, unrehearsed look. By deliberate choice, to the greatest degree we can achieve, what you see is what our (on-campus) students get. (I think this WYSIWOSG philosophy — I just made up that term —  is also one of the reasons for the success of Salman Khan — including the fact that in his case, unlike university MOOCs, he does not even lesson-plan his instruction sessions.)

So much for the most visible part of the MOOC: the instruction. But instruction is still just instruction. As I’ve said before, the learning takes place elsewhere, through other mechanisms, none of which we understand very well. So where is that educational  meat?

Now we are about to really enter speculative territory.

To be continued …

COMMENTS: As always, comments are welcome, provided they remain on topic.


I'm Dr. Keith Devlin, a mathematician at Stanford University. I gave my first free, open, online math course in fall 2012, and have been offering it twice a year since then. This blog chronicles my experiences as they happen.

Twitter Updates

  • RT @AshaRangappa_: From the people who literally chanted "LOCK HER UP" at every rally, even after prosecutors *formally declined* to prosec… 12 minutes ago
  • RT @julierehmeyer: I’m talking to another journalist about covering how Covid is causing an overall decline in human health — through long… 12 minutes ago

New Book 2012

New book 2011

New e-book 2011

New book 2011

March 2023
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031  

%d bloggers like this: