Posts Tagged 'Thomas Edison'

MathThink MOOC v4 – Part 2

In Part 2, I reveal that I share with Steve Jobs, J K Rowling,  Sebastian Thrun, Thomas Edison, and a successful Finnish video-game studio head, a strong belief in the power of failure.

This post continues the one posted two days ago about the expectations students being to my MOOC.

One of the problematic expectations many students bring to my course is that I will show them how to solve certain kinds of problems, work through a couple of examples, and then ask them to solve one or two similar ones. When I don’t do that, some of them complain, in some cases loudly and repeatedly.

There are several reasons why I do not simply continue to serve up the pureed (instructional) diet they are familiar with, and instead offer them some raw meat to chew on.

Most importantly, the course is not about mastering yet more, specific procedures; rather the goal is to acquire a new way of thinking that can be used whenever a novel situation is encountered. Tautologically, that cannot be “taught.” It has to be learned. The role of the “instructor” is not to instruct, but to offer guidance and feedback – the latter being feasible in a MOOC by virtue of most beginners having broadly similar reactions and making essentially the same mistakes.

To progress in the course, the student has to grow accustomed to the way professional mathematicians (to say nothing of engineers, business leaders, athletes, and the like) make progress: learn by failing. That’s the raw meat I serve up: failure.

Not global failure that debilitates and marks an end to an endeavor; rather repeated local failures that lead to eventual success. (Though the distinction is really one of our attitude toward a failure – I’ll come back to this in a moment.)

Most of us find it difficult making the adjustment to regarding failing as an integral part of learning, in large part because our school system misguidedly penalizes (all) failures and rewards (every little) success.

Yet, it is only when we fail that we actually learn something. The more we fail, the better we learn; the more often we fail, the faster we learn. A person who tries to avoid failure will neither learn nor succeed. If you take a math test and score more than 75%, then you are taking a test that is too easy for you, and hence does not challenge you to learn. A score of 75% or more says you did not need to take the test! You were not pushing the frontiers of your current abilities.

I should add that I am not talking about tests and exams designed to determine what you have learned, rather those that are an integral part of the learning process – which in my case, giving a course that offers no credential, means all the “graded” work.

In my course, the numbers the system throws out after a machine-graded Problem Set, or the mark assigned by peer evaluation, are merely indicators of progress. A grade between 30% and 60% is very solid; above 60% means you are not yet at the threshold where significant (for you) learning will take place, while a score below 30% tells you either that you need to put more time and effort into mastering the material, or slow down, perhaps working through the remainder of the course at your own pace then trying again the next time it is offered. (Another great advantage of a free MOOC.)

What is important is not whether you fail, but what you do as a result. As I was working on this post, I came across an excellent illustration in an article in FastCompany about the Finnish video game studio Supercell. Though the young company has only two titles in the market – Clash of Clans and Hay Day – it grossed $100 million in 2012 and $179 million in the first quarter of 2013 alone.

Supercell’s developers work in autonomous groups of five to seven people. Each cell comes up with its own game ideas.  If the team likes it, the rest of the employees get to play. If they like it, the game gets tested in Canada’s iTunes App store. If it’s a hit there it will be deemed ready for global release.

This approach has killed off several games. But here is the kicker: each dead project is celebrated. Employees crack open champagne to toast their failure. “We really want to celebrate maybe not the failure itself but the learning that comes out of the failure,” says Ilkka Paananen, the company’s 34-year-old CEO.

It’s not just in the PISA scores where Finland shows the world it knows a thing or two about learning; you can find it manifested in the App Store download figures as well!

(And let’s not forget that another Finnish game studio, Rovio, produced over a dozen failed games before they hit the global App Store jackpot with Angry Birds.)

Where I live, in Silicon Valley, one of the oft-repeated mantras is, “Fail fast, fail often.” The folks who say that do pretty well in the App Store too. In fact, some of them own the App Store!

One of my main goals in giving my MOOC is helping people get comfortable with failing. You simply cannot be a good mathematical thinker if you are not prepared to fail – frequently and repeatedly. Failing is what professional mathematicians do maybe 99% of the time. Responding appropriately to failure is a key part of mathematical thinking.

And not just mathematical thinking. It’s definitely true of engineering as well. Remember Thomas Edison, who on being asked how he motivated himself to continue his efforts to build an electric light bulb when a thousand attempts had failed, replied (paraphrase), “They were not failures, I just found a thousand ways it won’t work.”

The metaphor I use regularly in my MOOC is learning to ride a bike. If you think about it, you don’t learn to ride a bike; you learn how not to fall off a bike. And you do that by repeatedly falling off until your body figures out how to avoid falling.

Incidentally, the fact that you really did not learn to ride a bike by learning how to is indicated by the fact that almost no one can correctly answer the question, What direction do you turn the handlebars in order for the bike to turn to the right? Your conscious mind, the one that would have been involved if you had learned how to ride a bike, says you twist the handlebars to the right in order to turn the bike to the right. But, if you are able to ride a bike, your body knows better. You turn the handlebars to the left in order to make the bike turn to the right. Your body figured that out when it learned how not to fall down.

Don’t believe me? Go out and try. Make a conscious attempt to turn right by twisting the handlebars to the right. Most likely, your body will prevent you carrying through. But if you manage to over-ride your body’s instinct, you will promptly fall off. So please, do this on grass, not the hard pavement.

Not surprisingly, six weeks in a MOOC is woefully little to adjust to the professionals’ view of failure. The ones who breezed through my course, unfazed by seeing the system return a grade of 30% on a Problem Set, were in most cases, I suspect (and in a fair number of cases that suspicion was confirmed), professional engineers, business people, or others with a fair bit of post-high-school education under their belts. Those for whom the course was one of their first ventures into collegiate education, often had a hard time of it. (Not a few gave up and dropped the course, sometimes leaving an angry, departing post on the class forum page.)

It’s not called a “transition course” for nothing.

I’ll continue this theme of dealing with student expectations in my next post.

Meanwhile, I’ll leave you with three more examples about the power of failing in the learning process.

The first is Steve Jobs’ 2005 commencement address at Stanford.

The second is J. K. Rowling’s 2008 commencement address at Harvard.

Finally, and very close to home, is Sebastian Thrun’s recent business pivot of his MOOC delivery company Udacity, which I discussed in a commentary in the Huffington Post. Though I would agree with the many commentators that his initial attempt had “failed,” where the tone of many was dismissive, I saw just another instance of someone on the pathway to (for him, yet another) success. It’s all about how you view failure and what you do next.

I’ll continue the theme of dealing with student expectations in my next post.


I'm Dr. Keith Devlin, a mathematician at Stanford University. I gave my first free, open, online math course in fall 2012, and have been offering it twice a year since then. This blog chronicles my experiences as they happen.

Twitter Updates

New Book 2012

New book 2011

New e-book 2011

New book 2011

February 2017
M T W T F S S
« Dec    
 12345
6789101112
13141516171819
20212223242526
2728  

%d bloggers like this: