Posts Tagged 'mathematical thinking'



The Crucible: MOOC Planning – Part 8

A real-time chronicle of a seasoned professor embarking on his first massively open online course.

Well, I have survived the initial three weeks of my first MOOC. Though the bulk of the work (and I mean “bulk”) came before the course launched, it has still taken my TA and me a lot of time to keep things ticking over. There are the in-flight corrections of the inevitable errors that occur in a new course, together with the challenges presented by a completely new medium and a buggy, beta release platform, still under very rapid development.

The course website shows 61,846 registered students, but I suspect many of those have long stopped any kind of connection to the course, and another large group are simply watching the lecture videos. The really pleasing figure is that the number of active users last week (week 3) was 19,298. Based on what I hear about other MOOCs, retaining one student in three is a good number.

Both my hands-on TA, Paul, and the course Research Associate, Molly, are graduate students in Stanford’s School of Education, and besides helping me with aspects of the course design, they are approaching the project as an opportunity to carry out research in learning, particularly mathematics learning. Given the massive amount of data a MOOC generates, the education research world can expect to see a series of papers coming from them in the months ahead.

I’m not trained in education research, but some observations are self-evident when you look over the course discussion forums – something I’ve spent a lot of time doing, both to gauge how the course is going and to look for ways to improve it, either by an in-course modification of for a future iteration of the course.

I’ve always felt that the essence of MOOC learning is community building. There is no hope that the “instructor” can do more than orchestrate events. Without regular close contact with the students, the video-recorded lectures and the various course notes and handouts are like firing off a shotgun on a misty Scottish moor. The shot flies out and disperses into the mist, and you just hope some of it hits a target. (I haven’t actually fired a shotgun on a Scottish moor, or anywhere else for that matter, but I’ve seen it on TV and it seems the right metaphor.) With 60,000 (or 20,000) students, I can’t allow myself to respond to a forum post or an email from any single student. I have to rely on the voting procedure (“Like/Dislike”) of the forums to help me decide which questions to address.

This means the student body has to resolve things among themselves. It was fascinating watching the activity on the discussion forums take shape and develop a profile over the first couple of weeks.

One huge benefit for the instructor is the virtual elimination of the potentially disruptive influence – present in almost any class with more than twenty or so students – of the small number of students for whom nothing is good enough. Even in a totally free course, put on by volunteers, for which no college credential is awarded, there were a few early posts of that kind. But in each case the individual was rapidly put in his or her place by replies from other students, and before long stopped posting, and very likely dropped the course.

(An interesting feature of this was that each time it occurred, a number of students emailed me in private – rather than on the public course forum – to say they did not agree with the complainer, and to tell me they were enjoying the course. Clearly, even with the possibility of anonymous forum posts, which Coursera allows, at least for now, some people prefer to keep their communication totally private.)

Of far greater interest, at least to me, was how the student body rapidly split into two camps, based on how they reacted to the course content. As I’ve discussed in earlier posts to this blog, my course is a high-school to university transition course for mathematics. It’s designed to help students make the difficult (and for most of us psychologically challenging) transition from high school mathematics, with its emphasis on learning to follow procedures to solve highly contrived “math problems”, to developing an ability to think logically, numerically, analytically, quantitatively, and algebraically (i.e., in aggregate, mathematically) about novel problems, including often ill-defined or ambiguous real-world problems.

When I give this kind of course to a traditional class of twenty-five or so entering college students, fresh out of high school, the vast majority of them have a really hard time with it. In my MOOC, in contrast, the student body has individuals of all ages, from late teens into their sixties and seventies, with different backgrounds and experiences, and many of them said they found this approach the most stimulating mathematics class they had ever taken. They loved grappling with the inherent ambiguity and open-ended nature of some of the problems.

Our schools (at least in the US), by focusing on one particular aspect of mathematics – the formal, procedural – I think badly shortchange our students. They send them into the world with a fine scalpel, but life in that world requires a fairly diverse toolkit – including WD40 and a large roll of duct tape.

The real world rarely presents us with neat, encapsulated problems that can be solved in ten minutes. Real world problems are messy, ambiguous, ill-defined, and often with internal contradictions. Yes, precise, formal mathematics can be very useful in helping to solve such problems. But of far broader applicability is what I have been calling “mathematical thinking”, the title of my course.

I suspect the students who seemed to take to my course like ducks to water were people well beyond high school, who had discovered for themselves what is involved in solving real problems. Judging by the forum discussions, they are having a blast.

The others, the ones whose experience of mathematics has, I suspect, been almost entirely the familiar, procedural-skills learning of the traditional K-12 math curriculum, keep searching for precision that simply is not there, or (and I’ve been focusing a lot on this in the first three weeks) where the goal is to learn how to develop that precision in the first place.

The process of starting with a messy, real world problem, where we have little more than our intuitions to guide us, and then slowly distilling some precision to help us deal with that problem, is hugely valuable. Indeed, it is the engine that powered (and continues to power) the entire development of our science and our technology. Yet, in our K-12 system we hardly ever help students to learn how to do that.

Done well, the activities of the traditional math class can be great fun. I certainly found it so, and have spent a large part of my life enjoying the challenges of pure mathematics research. But a lot of that fun comes from working within the precise definitions and clear rules of engagement of the discipline.  To me mathematics was chess on steroids. I loved it. Still do, for that matter. But relatively few citizens are interested in making  a career in mathematics. An education system that derives its goals from the ivory-towered pursuit of pure mathematics (and I use that phrase in an absolutely non-denigrating way, knowing full well how important it is to society and to our culture that those ivory towers exist) does not well serve the majority of students.

It requires some experience and sophistication in mathematics to see how skill in abstract, pure reasoning plays an important role in dealing with the more messy issues of the real world. There is an onus on those of us in the math ed community  to help others to appreciate the benefits available to them by way of improved mathematical ability.

As I have followed the forum discussions in my MOOC, I have started to wonder if one thing that MOOCs can give to mathematics higher education in spades is a mechanism to provide a real bridge between K-12 education and life in the world that follows. By coming together in a large, albeit virtual community, the precision-seeking individuals who want clear rules and guidelines to follow find themselves side-by-side (actually, keyboard-to-keyboard) with others (perhaps with weak formal mathematics skills) more used to approaching open-ended, novel problems of the kind the real world throws up all the time. If so, that would make the MOOC a powerful crucible that would benefit both groups, and thus society at large.

To be continued …

Why MOOCs Look Unprofessional: MOOC planning – Part 4

A real-time chronicle of a seasoned professor embarking on his first massively open online course.

From an educational perspective, my goal in offering a MOOC on mathematical thinking is very modest. I have not approached the task as one of developing a whole new pedagogic model. That is a future goal — for me or for others. Rather I set out to see how much we can take current university teaching (of transition mathematics material) and make it available to a wide audience. Indeed, almost all the Stanford MOOCs currently being offered are free, online versions of regular Stanford courses, in many cases running concurrently with a physical class on campus. (As I noted in an earlier post, the technology that supports these MOOCs was actually developed at Stanford in order to facilitate flipped-classroom learning in on-campus classes.)

The underlying assumption of university education — at least at major research universities (as Stanford is) — is that the principle value for the student comes from studying with a world expert in a particular domain. Though many professors at research universities do in fact put enormous effort into their teaching, what is really being offered (sold) to students is the expertise (and reputations) of the faculty. (Other parts of the value proposition, such as the prestige of the university, stem from the faculty, both past and present.) It’s a method that works well for very bright, well-prepared, and highly motivated students, but it is not ideal for everyone.

In fact, even at less prestigious universities, where there are fewer leading research faculty, and at liberal arts colleges, where the primary focus is on undergraduate education, field-content knowledge hugely outweighs pedagogical content knowledge — how to teach the subject and how students learn it. (A Ph.D. is usually required for a faculty position.) That makes universities and colleges very different from high schools.

One of the implicit purposes of  a math transition course, such as mine (as well as many other first-year courses in different disciplines), is to help incoming students adjust to the different approach to teaching. More precisely, it is to help them adjust to not being “taught”, but having someone help them learn. This is particularly significant in mathematics — at least in the US — because of the hugely formulaic, procedures-focused nature of K-12 mathematics education in this country.

My challenge then, like that facing most of my colleagues offering their first MOOC, is to figure out how to take an existing educational model, hitherto used to teach (or help to learn) twenty-five or so students in a classroom, and make it available to thousands, spread around the world.

Since my topic is mathematical thinking, the biggest, and most obvious challenge is how to compensate for the complete absence of regular interaction between the students and me, the instructor. Sure, I give lectures when I teach a physical transition class, but the lectures are one of the least significant components. They really just set the agenda for learning. In order to help the students develop the ability for mathematical thinking, I need to see them in action at the board, to read their work, and to discuss their attempts face-to-face. Learning to think mathematically is more like learning to drive or to play tennis than soaking up knowledge. You have to do it alongside an expert or coach.

It’s a challenge I think cannot be completely overcome in a MOOC. The question is, is it possible to get part-way there? I suspect it is, but we’ll only find out for sure by making the attempt. So here we are.

One thing a MOOC does offer that is not possible in a physical class — and hence is a plus — is that all the instruction and professorial-learning-assistance can be on a one-to-one basis. Sure, it’s all one way, but if you set it up right (and if your voice/personality/whatever work over an ethernet cable), then the student can get that sense of working alongside the instructor — the expert.

Though by no means the first to discover that, Salman Khan, by virtue of his huge following at Khan Academy, demonstrated just how powerful is that sense of “working together, side-by-side”. Though I share the dismay of many of my colleagues at his less-than-expert content knowledge and his almost non-existent pedagogical content knowledge (neither of which he could be expected to have, given his background), where I seem to part company with many of them is the huge significance I attach  to the way he pulls off that human-connect. For online learning, I suspect it trumps almost all other factors.

(BTW, in developing my MOOC, I soon lost track of the number of times I made a decision based on a “suspicion” — or a “guess” or  “hunch”. MOOCs are generating enough research questions to sustain several generations of doctoral dissertations in education research.)

Based on that suspicion (admittedly a suspicion comfortingly buttressed by a Khan Academy user base that numbers in the millions), Khan’s format was my starting point, as I observed in my last post. Not just the physical aspect of “sitting alongside in a one-on-one tutorial” but the associated human connect (and with it reassurance and encouragement) that Khan delivers.

In Khan’s case, his now widely familiar format originated with him informally helping his school-age relatives (who lived a long way away) with their math homework. What the viewer gets on their computer screen is, well, just “Uncle Sal”, doing what he would have done if he were really sitting alongside one of his relatives. For my MOOC, I wanted to achieve a similar outcome. Not a slick show, not a polished, rehearsed performance. Just me doing math.

Of course, the logistics of putting together a complete course that has to run automatically, and be scalable to many thousands of students around the world, many of them not native English speakers, meant that there had to be a lot of detailed advanced planning. Everything had to be scripted. But when it comes to the bits where I explain some mathematics, I put the script to one side and just start to work through the material as if I am sitting next to a student.

You might not like it. It might not work for you. You will surely despair at my handwriting. You might hate my accent. (I did cut down drastically on my jokes and puns, in deference to a multilingual audience.) But as far as I can make it, absent being physically in the same room, it’s what you would get if you were taking the course with me here at Stanford.  [Some time spent in a campus video-editing studio made my into-camera segments look a lot smoother than they were when we recorded them! If it’s digital, it’s plastic. But the goal there was to reduce the length of those segments.]

Which brings me back to my starting point: seeing the extent to which we can take existing university education and make it available to the world.

Once we can do that — and it will surely take several iterations to iron out all the kinks and make an altogether better job of it — we can look at how to change the underlying model. In addition to MOOCs making accessible to the world some aspects of university education, I think that the act of designing them, mounting them, and analyzing the results, will lead to changes in the way we organize learning within our universities.

It is because the current goal is to see how well we can deliver (current) real university education to the world for free that most of the MOOCs being offered have an unpolished, unrehearsed look. By deliberate choice, to the greatest degree we can achieve, what you see is what our (on-campus) students get. (I think this WYSIWOSG philosophy — I just made up that term —  is also one of the reasons for the success of Salman Khan — including the fact that in his case, unlike university MOOCs, he does not even lesson-plan his instruction sessions.)

So much for the most visible part of the MOOC: the instruction. But instruction is still just instruction. As I’ve said before, the learning takes place elsewhere, through other mechanisms, none of which we understand very well. So where is that educational  meat?

Now we are about to really enter speculative territory.

To be continued …

COMMENTS: As always, comments are welcome, provided they remain on topic.

Khan Academy Meets Vi Hart: MOOC planning – Part 3

A real-time chronicle of a seasoned professor embarking on his first massively open online course.

The ideal way to learn mathematical thinking (and a great many other things that involve understanding, not just doing) is in a small physical group with an expert. That provides frequent opportunities to interact one-on-one with the expert, during which the expert can observe you work in real time (on paper or at a board) and can give you direct feedback on written work you have done and handed in for evaluation. It also provides frequent opportunities to discuss what is being learned with other students at the same stage of their learning, sometimes with the expert present, other times with the expert absent.

Sometimes, the expert will provide instruction. Though there have been successful instances of mathematics professors who largely avoid instruction (R L Moore being the most notable example), most of us (i.e., university mathematics educators) find that instruction has a valuable place in mathematics education. But many of us view it as just one part of mathematics education.

Anyone who has experienced highly interactive mathematics teaching will know how different it is from mere instruction, and how much more effective. I wrote about this last March in my Devlin’s Angle column for the MAA. Unfortunately, it seems clear that a great many Americans have never experienced good mathematics teaching. If they had, you would not have thousands of Khan Academy users (including famous figures such as Bill Gates) declaring Salman Khan is the best math teacher ever. You can say a number of good things about Sal Khan (I am going to say some of them in just a moment), but being a great math teacher is not one of them. To say that he is, simply reflects on the miserable math ed diet that many millions of American have been fed, for whom Khan Academy offers something far better than they were ever exposed to.

I bring up Khan Academy for a couple of reasons, one being that it set the stage for the MOOC explosion. Indeed, former Stanford CS professor Sebastian Thrun stated publicly last January that it was Khan Academy that inspired him to give his first MOOC in fall 2011, and then to leave Stanford and launch his own MOOC service Udacity at the start of this year.

It’s not merely the wide reach that Khan Academy demonstrated. As I discussed in a recent article for the MAA, Sal Khan managed to tap into the power of the Web medium to achieve a critical element of good teaching that not all teachers can offer: a strong teacher-student bond. Moreover, he did so using just his voice and the electronic trail of a digital pen on the viewer’s computer screen. Yes, some of the math is wrong, and the pedagogy is so poor, experienced teachers tear their hair out, but the very success of Khan Academy shows how important is the teacher-student connection.

Khan Academy is not a MOOC, of course, but it does provide a model for online mathematics instruction. In starting to plan my MOOC, I began by trying variants of Sal’s approach for the instructional part. Like him, I have a voice that works on the radio (or a Web audio channel) — an accident of birth — which makes such an approach feasible.

I soon concluded that his approach would not work. It is fine for presenting short instructional mini-lectures on how to follow a particular mathematical procedure, but it is woefully impoverished for trying to help students understand a mathematics idea or a proof, and to form the right mental concepts. For that, the huge importance in mathematics teaching of physical gestures, in particular the hand(s), cannot be ignored.

There is an old challenge in which you ask someone to describe a helix while keeping their hands clasped firmly behind their back. (Try it!) But it’s not just helices. Explaining almost any mathematical concept without using at the very least hand and arm gestures, and in many cases full body motion, is difficult if not impossible. There is masses written about this topic, based on many years of research. For example, take a look at this summary, or this one, or this forthcoming book. Or Google on the terms “mathematics + learning + hand + gesture” or variants thereof to see a lot more.

Since MOOC students access the material on a wide range of devices, with different screen sizes, I felt that a full body recording of me working at (and in front of) a blackboard or whiteboard would not be ideal. Besides, I love the sense of intimacy Khan Academy offers. You get a strong sense of sitting next to a friendly relative who is personally instructing you. I wanted to create that environment.

But trying to follow an explanation of a mathematical concept or proof Khan-style, where the visual channel consists only of a digital pen trace, was impossible — at least, it was given my educational style. At the very least, I needed my writing hand to direct the student’s focus. The simplest way to achieve that was to have a video camera mounted above my desk and record me working through the material in the time-honored fashion of paper-and-pencil. That seemed to work.

Having decided on the basic modality, the next issue was one of style and tone. After playing with some variants of the basic format, I came down in favor of a very informal look, where I simply slap down a sheet of paper on the desk in front of me and the student, and work through the material. (Marking the exact position of the paper on the desk and letting it totally fill the screen looked too artificial — though at this stage the issue was largely one of taste, and this is a decision I may change based on the experience I get from this first course. I did have to tape down the paper, but the initial placement was fairly casual, and the taping was sufficiently loose that the paper could still move a little — it takes effort to create “informality” on video.)

To counter the inevitable sense of frustration when watching a pen write something out in real time, I decided to speed up a lot of the writing during the video editing phase. (Though not to the speed of the wonderful Vi Hart, whose purpose is informative entertainment.) So at that stage I found myself with a “Sal Khan meets Vi Hart” look. A great place to start, given the success both have achieved!

For standalone Web instruction, that would likely be enough, but a MOOC involves a lot more. It is, after all, a course — a structured experience over several weeks, with a professor. Regular connection to the instructor is important — at least, I think it is. (It was for me when I was a student.) To achieve that “human connection,” many of my Stanford colleagues who have given MOOCs have put a small head-and-shoulders video of themselves speaking in one corner of the screen, as the material being discussed occupies the rest of the display. I tried that, and found it did not work for me, with my material. The face was a distraction. I wanted to keep as much of the Khan Academy sense as possible — you don’t ignore success unless there is good reason! So I opted to keep video of me separate from the hand-writing part.

I’ve posted a short sample from Lecture 1 on YouTube. Given the low resolution of YouTube video encoding, this does not display well in terms of content, but the Coursera platform uses far higher resolution video.

I doubt much of this material will survive to a second iteration of the course next year. At the very least, I’d want to go back and pay more attention to lighting and audio levels and consistency.  But it does have the overall look and feel I was trying to achieve. This is live beta, folks.

But as I have already indicated in this blog series, I don’t see the video lectures as the heart of the course. They merely set the agenda for learning. The real learning takes place elsewhere. I’ll turn to that topic in a future post.

Meanwhile, my Stanford MOOC Introduction to Mathematical Thinking is scheduled to begin on September 17 on Coursera. If you want to do some preliminary reading, there is my low-cost course textbook by the same name. Though written to align to the course, it is not required in order to complete the course. (Indeed, I noted  above that I see MOOCs as replacing textbooks — though some MOOCs may have required textbooks, so it would be unwise to predict the imminent death of the printed textbook!)

To be continued …

NOTE: I mentioned Khan Academy to indicate its role in the MOOC explosion and acknowledge its role in guiding the design of the instructional videos in my MOOC. But the focus of this blog is on MOOCs in general and mathematics MOOCs in particular. Comments discussing the merits or demerits of Khan Academy are off topic and hence will not be published; there are many other venues for such discussions.

How Facebook Made MOOCs Viable: MOOC planning – Part 2

A real-time chronicle of a seasoned professor embarking on his first massively open online course.

One obvious, but huge distinction between planning a physical course and planning a MOOC is that for the former, it is generally fairly easy to make changes — even major ones — once the course is underway. But MOOCs are different. It requires an enormous amount of time to put a MOOC together (video recording/editing and implementing all the online course materials are just two elements not present in a physical course, or if they are, those materials can usually simply be omitted if a mid-course adjustment is required). As a result, once the course launches, you are pretty well committed to running it through largely as planned.

If I were putting together a MOOC for which Stanford would charge (and offer credit), by now I would be getting decidedly nervous. But that is not how things stand at present. Everyone sees this sudden MOOC explosion purely as an experiment to see what the medium can offer. The courses are free, and since there is no credential at stake, there is no worry about unmotivated students or of cheating. An unmotivated student is not going to continue with the course beyond the first week or so, and the only person who loses by student cheating is the student. Presumably both will change if this experimental phase is a success, and MOOCs take their place alongside other forms of higher education, where there are payments and credentials.

My own view, as I’ve noted elsewhere, is that MOOCs are not a replacement of the traditional bricks-and-mortar university, rather they are the twenty-first century version of the textbook.

Widespread availability of textbooks did not replace universities. Indeed, they did not change university education very much at all. In theory, once every student could purchase a textbook, there should have been little need for professors to give mainstream content lectures — particularly if the professor had written the course textbook — but the basic content lecture continued to remain the dominant model.  Early in my professorial career, I tried to adopt a flipped classroom approach, based on giving students reading assignments from a book I had written, and using the class time to discuss the material. It proved to be a disaster; hardly any of the student read the assigned reading, and of those that had, few really knew how to read a mathematics text and learn by so doing. I soon ended up having to give classical lectures on the material that was expressed far better in my textbook — far better because I had spent time putting my thoughts onto the page and the resulting manuscript had been professionally edited.

I am not sure that, on their own, video-recorded instructional material will lead to much of a change in university education either. Video-lectures are not really very different from textbooks. At least, for most university-level material that is the case. For learning how to carry out maintenance around the house, to change a bicycle tire, to assemble a piece of furniture, etc., video is far better than text. But those are all simple procedural learning — the goal is to learn how to do something, and for that purpose, showing is more efficient than describing in words. In contrast, the main focus of much university education is understanding; the student is supposed to learn how to think differently. That is very hard to do at arm’s length, regardless of whether the arm involves a textbook or a video. It is by direct interaction with an instructor and with other learners that we can gain understanding and learn how to think a certain way. That is why I don’t see MOOCs as a threat to the existence of universities.

MOOCs may, however, do what textbooks and instructional-videos failed to do. They may finally give rise to flipped classrooms — a mere six centuries after the invention of the printing press give rise to textbooks. The reason is, MOOCs are far more than video-recorded instruction. In fact, video lectures are one of the least significant elements of a MOOC. The key to the educational potential of MOOCs are human-computer and human-human interaction —  the latter especially so for most subjects. In particular, social media are what make MOOCs possible, and it is the widespread familiarity with, and acceptance of, human-human interaction over an ethernet cable that led to the sudden explosion of interest in MOOCs. In short, MOOCs are a direct consequence of the growth of Facebook, which made interaction-by-social-media global.

[I should add that I don’t see the degree of human-human interaction offered by social media in a MOOC being as educationally powerful as direct fact-to-face interaction. The unavoidable limitation in a MOOC is not the medium per se, rather is the scalability factor. In a physical class, the students get to interact with the professor — the expert, the domain professional. In a MOOC, that crucial part is missing. I think good course design can get a lot out of social media, but that one factor means that we’ll always need physical universities.]

The challenge facing a professor setting out to design and offer a MOOC, then, is to figure out how to take advantage of the (human-computer and) human-human interaction made possible on a global scale by social media, in order to provide students with a valuable learning experience.

In this regard, the experiment really begins with (many of) the 117 MOOCs currently offered by the MOOC platform Coursera. Coursera is a spin-off from a Stanford project in Computer Science to develop a platform to support flipped classrooms at the university. The first wave of Stanford MOOCs were basic level computer science courses, where there is a heavy focus on procedural learning and less dependency on reflection and peer interaction. (Those features come later in CS, and when they do, not a few Stanford CS students drop out and start their own companies, occasionally becoming millionaires within a few years!) But many of the second wave of courses now underway are in humanities and other areas, where the primary focus is on thinking and understanding, not doing.

To take just one instance of course design, in a basic-level computer science MOOC, it is possible to give machine-graded assignments. It would be possible to offer a math MOOC a similar way, provided the focus was on mastering basic computational procedures.  But in my case, where my goal is to develop mathematical thinking, I realized from the start that the key to making it work would be the social media factor. Just as it is for humanities courses.

That impacted how I would design, structure, and present the core material, as I’ll describe in my next post.

To be continued …

The Challenges of Online Education: MOOC planning – Part 1

A real-time chronicle of a seasoned professor embarking on his first massively open online course.

I’ve been pretty quiet on this blog since launching it on May 5.

Partly that is due to summer vacation and the start of great cycling weather. But a lot of my time got swallowed up planning and developing my fall MOOC. It’s now scheduled to start on September 17, and the registration page just went live on Coursera, the Stanford spin-off MOOC platform now offering online courses from a number of the nation’s best universities.

All my Stanford colleagues who gave courses in the first round earlier this year reported how much time it takes to create such a course, no matter how long you have been teaching at university level. Knowing that you won’t be in the same room as the students, where there is ongoing interaction and constant, instant feedback, means that the entire course has to be planned down to the finest detail, before the first day. In addition to the usual course planning, lectures have to be recorded written materials prepared, and interactive quizzes constructed well in advance, with the knowledge that for some students, you may be their only connection to the material.

In my case, my fall term was already pretty full, before counting the MOOC, so I knew I could not rely on having the opportunity to record material once the course begins. That meant I had to try to anticipate well before the course launch, the difficulties the students might have.

Of course, I would not have chosen my topic (introduction to mathematical thinking) if I had not taught it many times before. Many colleges and universities ask their incoming mathematics students to take a “transition course” to develop the all-important skill of mathematical thinking. I helped pioneer such courses back in the 1970s. So I did start out with a good idea of the kinds of difficulties students would encounter on meeting the material for the first time.

But the challenges I faced (and still face) in trying to provide such a course in a MOOC format were, and are, formidable. To be honest, I am not sure it can really be done, but the only way to find out is to try – and not just once either. (Like the Coursera platform itself, my fall MOOC will be very much a beta release.)

An obvious problem is that learning to think like a mathematician, which is what transition courses are about, is not something that can be achieved by instruction. In that respect, the learning process is similar to learning to ride a bicycle. There is no avoiding a lengthy, and often painful process of trying and failing (i.e., falling) until, one day everything drops into place and you find you can ride. At that point, you wonder why it took you so long. Instruction helps, though only in retrospect can you see how. During the learning period, riding seemed impossible – something others could miraculously do but that you were not capable of.

(As someone who came to serious road biking and mountain biking later in life, I can recall vividly that the same is true for “advanced cycling.” For instance, being instructed – many times – how to corner fast on a downhill did not prevent me having to go through a lengthy process of learning how to do it. And while the broken collarbone I sustained in the process was a result of a rear-tire blowout on a sharp corner descending Mt Hamilton outside San Jose, California, it is possible that with more experience I could have kept control. But I am getting off track, which is what happened on Mt Hamilton as well.)

The challenge facing anyone trying to help students learn how to think mathematically by way of a MOOC, is that the communication channel is one way, from the instructor to the student. The sheer number of students (likely into the thousands) prevents any reliance on even the highly impoverished forms of student-faculty interaction that are possible with distance education for a class of no more than thirty students.

The only option (at least the only one I could see) is to try to create an environment where the students can help one another, by forming small study-groups and working together. In particular, I felt the students in my transition mathematics MOOC would benefit greatly by having regular transition course instructors use my MOOC in a flipped classroom model, so that my MOOC students working alone would be able to interact with other MOOC students who in turn were interacting in-person with a professor in a regular class, and perhaps on occasion interact directly with one of those professors online.

This is why I decided to offer my MOOC at the same time (the start of the US academic year) as many US colleges and universities offer their own transition courses. If instructors of those courses get their students to take my MOOC as part of their own learning process, their participation in study groups and the online discussion forums could ensure that every student in the MOOC is at most just one step removed from an expert. For the students in regular transition courses, using my MOOC in a flipped classroom experience, there is the added benefit that we all learn very efficiently when we try to teach others.

Another advantage of trying to involve instructors and students from regular transition classes, is that those instructors could critique my teaching in their class. Contrary to popular belief, “experts” are not infallible beings who know everything. They are just regular people who have more experience in a particular domain than most others. Analyzing and critiquing expert performance is another powerful way to learn. (So feel free to tear me apart. I can take it; I brought up two daughters through childhood and adolescence to adulthood, and after that I was a department chair and then a dean.)

To make my course attractive to regular transition course instructors, I had to make it very short, and focus on the very core of such courses, so those instructors would have plenty of time to take their own courses in whatever direction they choose.

Once I made that decision, I decided to write a companion book for the course. My Stanford colleagues who were giving the first MOOCs reported that some students wanted a physical book to read to support the online learning. People learn in different ways, and we instructors should accommodate them as much as possible.

There are many transition mathematics textbooks on the market, but they are all fairly pricey (ranging from $60 to $140) and cover much more ground than was possible in a mere five weeks of MOOC instruction. Definitely outside the spirit of free learning for all. I decided to write a companion book rather than a textbook (insofar as there is a distinction), since my view is that MOOCs are actually twenty-first century replacements of textbooks.

(I don’t think there is any chance that MOOCs can effectively replace regular university education, by the way, and a school district, state, or nation that decides to go that route will be just a single generation away from becoming a new third-world economy. But if I were a major textbook publisher, I would see MOOCs as the impending end of that business.)

To remain close to the ideal of free education, I decided to make my text a cheap, print-on-demand book. I typeset it myself in LaTeX, paid for an experienced mathematics textbook editor to edit the manuscript, and sent it off as a PDF file to Amazon’s self-publishing CreateSpace service to turn it into a book that can be ordered from Amazon. It’s called Introduction to Mathematical Thinking, and it should be available by August 1. It costs $9.99 and comes in at 102 pages. (There is no e-book option. Given the necessity of mathematical typesetting, an acceptable e-book not possible – at least for e-books that can display on any e-reader. Besides, as I mentioned already, to my mind, the MOOC itself is the true digital equivalent of a textbook.)

Incidentally, the process of self publication on CreateSpace is so simple and efficient, I suspect that low-cost, print-on-demand publishing is the future of academic textbooks.

So add writing a book to the other tasks involved in creating a MOOC.

Still, the book-writing part was easy. Though many of my colleagues find writing books a major challenge – an insurmountable challenge for some of them – I have always found it relatively painless, indeed pleasurable.

In any event, books are an ancient medium that academics and teachers have long been familiar with. Pretty well everything else about the MOOC process was new. I wrote the book before I designed the course; indeed, the book constituted the curriculum. The only new twist for me was that in writing the book I was conscious of using it as the basis for a MOOC.

With the book written, the next question was, how do I present the lectures? After experimenting with a number of formats, I finally settled on the one I’ll use this fall. It’s not the one Sal Khan uses for Khan Academy. Given his success, I started out trying his format, but I found it just did not work for the kind of material I was dealing with. I’ll say more in my next posting. There were other surprises ahead as well.

To be continued …

Help wanted!

Why am I doing this? Attempting to give a five-week, school-to-university transition course to possibly thousands of students on the Web, I mean.

I always took my teaching seriously. (When I started out university teaching in the 1970s, that was actually not a requirement for faculty; the focus was all on research. My initial appointment in the UK was as a “Lecturer”. Along with the US title of “Instructor”, those names reflected the then-expectation of what the job entailed as far as teaching was concerned.) In many years of university teaching, I always felt that as the number of students increased beyond twenty or so, the quality of the learning fell significantly. Clearly, I am not referring to lecturing — that is, providing instruction, where the students are essentially passive receivers of information. That can clearly be scaled indefinitely, through videos, and arguably that is what textbooks have always done. What can’t be scaled, is the interaction between the professor and the students — which is where a lot of the real learning takes place.

I discussed the distinction between instruction and good, interactive teaching in my March Devlin’s Angle column for the MAA. From what I read and hear all the time, I suspect that many people in the US have never experienced anything beyond instruction, at least when it comes to their mathematics education. Providing mathematics instruction (and nothing more) is like trying to eliminate starvation by providing people with fish. That alleviates the immediate hunger, but it is not a long term solution, and moreover can create a dependency on others. A far better solution is to show people how to catch fish for themselves. That is what good teaching tries to do, by trying to help students learn to think for themselves.

Mathematics is a mental activity. It is something you do. Like all activities, doing it takes effort and it makes you tired. The best way to learn how to do something is to do it. Riding a bicycle, driving a car, playing golf or tennis, skiing, playing a musical instrument, playing chess, and so on, you didn’t learn them by sitting in a classroom, listening to someone provide instruction. Of course, instruction is valuable, but only when it accompanies learning-by-doing, and is provided to the learner on demand, based on that learner’s specific needs at that instant, when it makes sense and is most readily absorbed.

A good teacher, like a good music instructor or athletics coach, begins by identifying what the student knows and can do, and then builds on that. A personal tutor can provide a complete education that way, though besides being inefficient in terms of the utilization of human expertise, one-on-one instruction suffers the significant loss of collaborative work with a small group of peers. More optimal, in my view, an experienced classroom teacher can do wonders with a class of twenty or so, split into groups of four or five for periods of collaborative work.

But with more than twenty, the dynamics change; the teacher can no longer devote sufficient time to each individual and to each group.

In my later career, when I was able to set my own class limits, I always capped at twenty (though I occasionally relented and let the number creep up by one or two, when desperate, math-requirement-short seniors pleaded to be allowed in.) So, coming back to my opening question, why on earth did I decide to try offering an online course that could attract many thousands of students, none of whom I would meet in person?

The answer was a suspicion that, with a suitable re-assessment of the goals of the course, together with a little social engineering, a different dynamic could take over. Talking to some of the Stanford professors who had given, or were giving, MOOCs, provided some anecdotal confirmation of that suspicion. So I stepped forward and volunteered to offer a five-week “transition course” this coming fall.

The purpose of transition courses is to introduce students to mathematical thinking. In the high school mathematics class, the emphasis is on mastery of procedures for solving problems. As many students discover, and as many teachers instruct them, an effective way to succeed is to approach a new problem by looking for a template — a worked example in a textbook, or these days presented on a YouTube video — and then just changing the numbers. (That is actually a valuable skill in itself, but that’s another topic.) University mathematics, on the other hand — at least the mathematics taught at university to future math and science majors — has a different goal: Learning how to think like a mathematician. And that is something most of us initially find extremely hard, and very frustrating. I’ll elaborate in future postings, but for anyone unfamiliar with the transition problem, let me give an analogy.

If we compare mathematics with the automotive world, school math corresponds to learning to drive, whereas in the automotive equivalent to college math is learning how a car works, how to maintain and repair it, and, if a student pursues the subject far enough, how to design and build their own car.

I was one of the early pioneers of transition courses back in the late 1970s, and wrote one of the first companion books, Sets, Functions, and Logic. (It was written for the UK market, but it did make it into a US edition, though many American students, used to full-service textbooks, found it hard going.) So it was a natural for me to see if, and how, the teaching of such material could be ported to the Web as a MOOC.

The benefits of doing so would, of course, be significant. Not least, high school students could attempt it prior to going to college, and college frosch taking a (physical) transition course would have a secondary source for what many find an extremely difficult transition.

The particularly fascinating part to me, as a professor, is figuring out how to take a learning experience that works in a small-group setting on a campus, and create a functionally equivalent experience online. Note that I said “create a functionally equivalent experience;” I did not say “replicate the classroom experience.”

By far the greatest problem is how to provide the personal, expert feedback that is essential to good mathematics learning. Web delivery is fine for providing instruction, but that is just a part of learning, and a minor part at that, as I discussed in that March Devlin’s Angle I referred to earlier. Taking stock of the goal and the available resources, however, there were some hopeful signs.

First, the whole MOOC concept finally took off late last year (with Sebastian Thrun’s Stanford AI course) largely because Stanford and the now independent spinoff company Coursera built innovative new platforms. (Just last week, MIT and Harvard announced that they too were launching their own platform, edX.) Listening to some of my Stanford colleagues describe their experiences giving their first-generation MOOCs, I began to see the opportunities the new platforms (which are still under development) offer.
I’ll examine some of the affordances the new learning medium provides in future postings. (I’m still learning myself.) In the meantime, I need to assemble a small army of volunteers. This is where I’ll need help — possibly your help.
One of the things we’ve learned already about MOOCs, is that a key component is the creation of a strong online community. Learning is all about human interaction. The technology just provides the medium for that interaction. In offering my math transition MOOC at the start of the fall term, when many colleges and universities offer their own transition course, I am inviting any instructor who will be giving such a course, together with their students, to join me and my MOOC students online, making interaction with other students around the world a part of a much larger learning community.
In my May Devlin’s Angle post, I put out a first call for involvement of my fellow MAA members. Here, in summary, is what I wrote there.

I’m going to make my course just five weeks long, starting in early October. By incorporating participation in my Stanford course as part of your students’ learning experience, everyone could benefit. For one thing, your students are likely to be inspired by being part of an educational revolution that for millions of less privileged people around the globe can quite literally be life changing.

Because they will be supported by being part of a physical learning community, with the personal support of you, their instructor, your students will be highly empowered, privileged members of that online community. They can take advantage of your support so that they can help others. And as we all know, there is no more powerful way to learn than to try to teach others.

For that student half way round the world, perhaps working alone, trying to improve his or her life through education — by learning to think mathematically — the potential benefit is, of course, far greater. Helping that unknown young (or not so young) person make that step might just help inspire your own students to put in that bit of extra effort to master that tricky new transition material. Everyone wins.

If my Stanford MOOC draws a student body in the tens of thousands, which it might, based on the experience of my colleagues here, there is no way I and a couple of graduate TAs can provide individual feedback to every student. But if instructors and their students across the US join me, then maybe we can collectively achieve something remarkable.

I am making my MOOC deliberately short, five weeks, so participation will leave most of the semester open for participating instructors to concentrate on giving their own course, perhaps using their students’ initial experience in the MOOC community as a springboard for the rest of the course. I will make it a basic vanilla transition course, so other instructors can build on it.

Of course, you don’t have to be an instructor or a student in a transition class in order to participate. The course is totally open and free. You simply have to register (online) and start the course. So anyone who is familiar with the material — who already can think like a mathematician — can help out.

Those of us in education know how it can change lives. Growing up in a working class area of the UK in the early Post Second World War era, a free education provided by the government changed mine. Now, through technology, I can return the favor by helping others around the world change theirs. Please join me this fall as we learn how to teach the world.


I'm Dr. Keith Devlin, a mathematician at Stanford University. I gave my first free, open, online math course in fall 2012, and have been offering it twice a year since then. This blog chronicles my experiences as they happen.

Twitter Updates

New Book 2012

New book 2011

New e-book 2011

New book 2011

July 2022
M T W T F S S
 123
45678910
11121314151617
18192021222324
25262728293031

%d bloggers like this: