*A real-time chronicle of a seasoned professor embarking on his first massively open online course.*

The ideal way to learn mathematical thinking (and a great many other things that involve understanding, not just doing) is in a small physical group with an expert. That provides frequent opportunities to interact one-on-one with the expert, during which the expert can observe you work in real time (on paper or at a board) and can give you direct feedback on written work you have done and handed in for evaluation. It also provides frequent opportunities to discuss what is being learned with other students at the same stage of their learning, sometimes with the expert present, other times with the expert absent.

Sometimes, the expert will provide instruction. Though there have been successful instances of mathematics professors who largely avoid instruction (R L Moore being the most notable example), most of us (i.e., university mathematics educators) find that instruction has a valuable place in mathematics education. But many of us view it as just one part of mathematics education.

Anyone who has experienced highly interactive mathematics teaching will know how different it is from mere instruction, and how much more effective. I wrote about this last March in my Devlin’s Angle column for the MAA. Unfortunately, it seems clear that a great many Americans have never experienced good mathematics teaching. If they had, you would not have thousands of Khan Academy users (including famous figures such as Bill Gates) declaring Salman Khan is the best math teacher ever. You can say a number of good things about Sal Khan (I am going to say some of them in just a moment), but being a great math teacher is not one of them. To say that he is, simply reflects on the miserable math ed diet that many millions of American have been fed, for whom Khan Academy offers something far better than they were ever exposed to.

I bring up Khan Academy for a couple of reasons, one being that it set the stage for the MOOC explosion. Indeed, former Stanford CS professor Sebastian Thrun stated publicly last January that it was Khan Academy that inspired him to give his first MOOC in fall 2011, and then to leave Stanford and launch his own MOOC service Udacity at the start of this year.

It’s not merely the wide reach that Khan Academy demonstrated. As I discussed in a recent article for the MAA, Sal Khan managed to tap into the power of the Web medium to achieve a critical element of good teaching that not all teachers can offer: a strong teacher-student bond. Moreover, he did so using just his voice and the electronic trail of a digital pen on the viewer’s computer screen. Yes, some of the math is wrong, and the pedagogy is so poor, experienced teachers tear their hair out, but the very success of Khan Academy shows how important is the teacher-student connection.

Khan Academy is not a MOOC, of course, but it does provide a model for online mathematics instruction. In starting to plan my MOOC, I began by trying variants of Sal’s approach for the instructional part. Like him, I have a voice that works on the radio (or a Web audio channel) — an accident of birth — which makes such an approach feasible.

I soon concluded that his approach would not work. It is fine for presenting short instructional mini-lectures on how to follow a particular mathematical procedure, but it is woefully impoverished for trying to help students * understand* a mathematics idea or a proof, and to form the right mental concepts. For that, the huge importance in mathematics teaching of physical gestures, in particular the hand(s), cannot be ignored.

There is an old challenge in which you ask someone to describe a helix while keeping their hands clasped firmly behind their back. (Try it!) But it’s not just helices. Explaining almost any mathematical concept without using at the very least hand and arm gestures, and in many cases full body motion, is difficult if not impossible. There is masses written about this topic, based on many years of research. For example, take a look at this summary, or this one, or this forthcoming book. Or Google on the terms “mathematics + learning + hand + gesture” or variants thereof to see a lot more.

Since MOOC students access the material on a wide range of devices, with different screen sizes, I felt that a full body recording of me working at (and in front of) a blackboard or whiteboard would not be ideal. Besides, I love the sense of intimacy Khan Academy offers. You get a strong sense of sitting next to a friendly relative who is personally instructing * you*. I wanted to create that environment.

But trying to follow an explanation of a mathematical concept or proof Khan-style, where the visual channel consists only of a digital pen trace, was impossible — at least, it was given my educational style. At the very least, I needed my writing hand to direct the student’s focus. The simplest way to achieve that was to have a video camera mounted above my desk and record me working through the material in the time-honored fashion of paper-and-pencil. That seemed to work.

Having decided on the basic modality, the next issue was one of style and tone. After playing with some variants of the basic format, I came down in favor of a very informal look, where I simply slap down a sheet of paper on the desk in front of me and the student, and work through the material. (Marking the exact position of the paper on the desk and letting it totally fill the screen looked too artificial — though at this stage the issue was largely one of taste, and this is a decision I may change based on the experience I get from this first course. I did have to tape down the paper, but the initial placement was fairly casual, and the taping was sufficiently loose that the paper could still move a little — it takes effort to create “informality” on video.)

To counter the inevitable sense of frustration when watching a pen write something out in real time, I decided to speed up a lot of the writing during the video editing phase. (Though not to the speed of the wonderful Vi Hart, whose purpose is informative entertainment.) So at that stage I found myself with a “Sal Khan meets Vi Hart” look. A great place to start, given the success both have achieved!

For standalone Web instruction, that would likely be enough, but a MOOC involves a lot more. It is, after all, a * course* — a structured experience over several weeks, with a professor. Regular connection to the instructor is important — at least, I think it is. (It was for me when I was a student.) To achieve that “human connection,” many of my Stanford colleagues who have given MOOCs have put a small head-and-shoulders video of themselves speaking in one corner of the screen, as the material being discussed occupies the rest of the display. I tried that, and found it did not work for me, with my material. The face was a distraction. I wanted to keep as much of the Khan Academy sense as possible — you don’t ignore success unless there is good reason! So I opted to keep video of me separate from the hand-writing part.

I’ve posted a short sample from Lecture 1 on YouTube. Given the low resolution of YouTube video encoding, this does not display well in terms of content, but the Coursera platform uses far higher resolution video.

I doubt much of this material will survive to a second iteration of the course next year. At the very least, I’d want to go back and pay more attention to lighting and audio levels and consistency. But it does have the overall look and feel I was trying to achieve. This is live beta, folks.

But as I have already indicated in this blog series, I don’t see the video lectures as the heart of the course. They merely set the agenda for learning. The real learning takes place elsewhere. I’ll turn to that topic in a future post.

Meanwhile, my Stanford MOOC Introduction to Mathematical Thinking is scheduled to begin on September 17 on Coursera. If you want to do some preliminary reading, there is my low-cost course textbook by the same name. Though written to align to the course, it is not required in order to complete the course. (Indeed, I noted above that I see MOOCs as replacing textbooks — though some MOOCs may have required textbooks, so it would be unwise to predict the imminent death of the printed textbook!)

*To be continued …*

NOTE: I mentioned Khan Academy to indicate its role in the MOOC explosion and acknowledge its role in guiding the design of the instructional videos in my MOOC. But the focus of this blog is on MOOCs in general and mathematics MOOCs in particular. Comments discussing the merits or demerits of Khan Academy are off topic and hence will not be published; there are many other venues for such discussions.

What would I have to know before starting your course. I’m reviewing my math using khans academy (on trigonometry now). I’ve done it all before but I forgot a lot of it. Now im going through all of the stuff before your course starts. I hope I can keep up with your course.

zander, You’ll find you won’t make any direct use of much high school math. The course is not about “doing math” in the way schools typically present it. It’s about “mathematical thinking.” As you’ll discover, that’s a very different thing. You will almost certainly find it hard (and at times confusing) – but so will everyone else! The trick is to stick with it. Good luck.

Hi, Thank you for taking the effort in teaching this course. Really appreciated.

I have signed up for the class. Though, cant see the point of writing down explanation like it is in the intro video “We show that ….. xxx ” Seems to be a bit text heavy. Can understand why it would be required for Proof’s etc. Also the paper is not to clear and can barely read the text.